首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
As-prepared polyaniline (PANI) nanorods have been used to synthesize an iron phosphate/polyaniline (FePO4/PANI) composition through the microemulsion technique. After sintering at 460 °C under a nitrogen protective atmosphere, the PANI carbonized, yielding the amorphous iron phosphate/carbonized polyaniline nanorods (FePO4/CPNRs) composite, which acts as the cathode material in sodium-ion batteries (SIBs). The electrochemical performance of FePO4/CPNRs composite shows an initial discharge specific capacity of 140.2 mAh g?1, with the discharge specific capacity being maintained at 134.4 mAh g?1 after the 120th cycle, up to 87.9 % of the theoretical capacity (154.1 mAh g?1 for NaFePO4), as well as an excellent rate capability in sodium-ion batteries. Compared with pure FePO4, the electrochemical performance has been greatly improved. On the one hand, using the CPNRs as conductive medium significantly improves electronic transport. On the other hand, the FePO4 sphere of nanoscale particles, which has a large specific surface area, can promote an active material/electrolyte interface reaction and improve the speed of sodiation and desodiation during the charge and discharge process. The amorphous FePO4/CPNRs composite shows outstanding electrochemical performance as competitive cathode material in SIBs.  相似文献   

2.
Activated carbon aerogels (ACAs) with high bimodal porosity were obtained for lithium/sulfur batteries by potassium hydroxide (KOH) activation. Then sulfur–activated carbon aerogels (S–ACAs) composites were synthesized by chemical deposition strategy. The S–ACAs composites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy, and N2 adsorption/desorption measurements. It is found that the activated carbon aerogels treated by KOH activation presents a porous structure, and sulfur is embedded into the pores of the ACAs network-like matrix after a chemical deposition process. The Li/S–ACAs (with 69.1 wt% active material) composite cathode exhibits discharge capacities of 1,493 mAh g?1 in the first cycle and 528 mAh g?1 after 100 cycles at a higher rate of C/5 (335 mA g?1). The S–ACAs composite cathode exhibits better electrochemical reversibility, higher active material utilization, and less severe polysulfide shuttle than S–CAs composite cathode because of high bimodal porosity structure of the ACAs matrix.  相似文献   

3.
The SnO2 sheet/graphite composite was synthesized by a hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD and FE-SEM. The electrochemical performance of SnO2 sheet/graphite composite was measured by galvanostatic charge/discharge cycling and EIS. The first discharge and charge capacities are 1,072 and 735 mAh g?1 with coulombic efficiency of 68.6 %. After 40 cycles, the reversible discharge capacity is still maintained at 477 mAh g?1. The results show that the SnO2 sheet/graphite composite displays superior Li-battery performance with large reversible capacity and good cyclic performance.  相似文献   

4.
Vertical polyaniline (PANI) nanowire arrays on graphene‐sheet‐coated polyester cloth (RGO/PETC) were fabricated by the in situ chemical polymerization of aniline. The 3D conductive network that was formed by the graphene sheets greatly enhanced the conductivity of PANI/RGO/PETC and improved its mechanical stability. PANI nanowire arrays increased the active surface area of PANI, whilst the hierarchically porous structure of the PANI/RGO/PETC electrode facilitated the diffusion of the electrolyte ions. Electrochemical measurements showed that the composite electrode exhibited a maximum specific capacitance of 1293 F g?1 at a current density of 1 A g?1. Capacitance retention was greater than 95 %, even after 3000 cycles, which indicated that the electrode material has excellent cycling stability. Moreover, the electrode structure endowed the PANI/RGO/PETC electrode with a stable electrochemical performance under mechanical bending and stretching.  相似文献   

5.
In this work, flower-like SnO2/carbon nanotubes (CNTs) composite was synthesized by one-step hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD, FESEM and TEM. The electrochemical performance of the flower-like SnO2/CNTs composite was measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The results show that the flower-like SnO2/CNTs composite displays superior Li-battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1,230 and 842 mAh g?1, respectively. After 40 cycles, the reversible discharge capacity is still maintained at 577 mAh g?1 at the current densities of 50, 100 and 500 mA g?1, indicating that it’s a promising anode material for high performance lithium-ion batteries.  相似文献   

6.
A spherical porous carbon (SPC) with high specific surface area is prepared by spray pyrolysis at 800 °C followed by removing silica template. The prepared SPC is employed as a conductive matrix in the sulfur cathode (S-SPC) for lithium–sulfur secondary batteries. The BET surface area of the prepared SPC sample is as high as 1,133 m2 g?1 and the total pore volume is 2.75 cm3 g?1. The electrochemical evaluations including charge–discharge tests, cyclic voltammograms (CV), and electrochemical impedance spectrum suggest that the prepared S-SPC composite presents superior electrochemical stability when compared to the S-SP cathode. The as-prepared S-SPC composite shows improved cycle performance. The reversible discharge capacity is about 637 mAh g?1 after 50 cycles, which is much better than that of the as-prepared sulfur–Super P carbon black composite. It may be attributed to the high porosity and excellent conductive structure of the SPC.  相似文献   

7.
以制备的氧化石墨凝胶和聚苯胺纳米线为原料, 将二者按一定的质量比进行混合超声分散, 再以混合分散液为前驱体采用一步水热法制备得到三维还原氧化石墨烯(RGO)/聚苯胺(PANI) (RGP)复合材料, 采用扫描电镜(SEM), 透射电镜(TEM), X射线衍射(XRD), 傅里叶变换红外(FT-IR)光谱, X射线光电子能谱(XPS)和电化学测试等分析研究了复合材料的形貌、结构和超级电容性能. 结果表明, 复合材料既保持了还原氧化石墨烯的基本形貌, 又能使聚苯胺较好地镶嵌在还原氧化石墨烯的网状结构中; 且当氧化石墨与聚苯胺的质量比为1:1时复合材料在0.5 A·g-1电流密度下比电容可高达758 F·g-1, 即使在大电流密度(30 A·g-1)下其比容量仍高达400 F·g-1,在1A·g-1电流密度下循环1000次后比容量保持率为86%, 表现出了良好的倍率性能和循环稳定性, 其超级电容性能远优于单纯的还原氧化石墨烯和聚苯胺, 其优异的超级电容性能可归咎于二者的相互协同作用.  相似文献   

8.
In this report, a porous, electronically conductive nickel foam foil (NFF), which is rolled for smooth surface, is introduced as an interlayer placed between the sulfur electrode and the separator to suppress the loss of active material and self-discharge behavior in lithium–sulfur (Li–S) systems. The electrodes are characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge test. The cell with the rolled NFF interlayer shows superior performance in terms of capacity utilization, reversibility, and enhanced rate capability. It exhibits reversible discharge capacity of 604 mAh g?1 after 80 cycles at 0.2 C, which is much higher than that of pristine sulfur without NFF (424 mAh g?1). The improvement on electrochemical performance is attributed to the 3D architecture of nickel foam foil as lithium–sulfur batteries interlayer, which can provide a good conductive network with structural stability and the porous architecture accommodating the migrating polysulfide to reduce the shuttling phenomenon during the charge–discharge processes.  相似文献   

9.
A yolk-shell sulfur/carbon (S/C) composite for the cathode of lithium–sulfur batteries was successfully prepared by an accessible method with tetrahydrofuran as solvent. The as-prepared composites are characterized by thermal gravimetric, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption. In this composite, sulfur particle is encapsulated in the carbon shell even entering into the micropores of carbon Bp2000. The electrochemical performance of the S/C composites is evaluated. The results indicate that the S/C composite with 50 wt% sulfur content shows good reversibility, excellent rate capability, and slow degradation. It delivers an initial capacity of 784.4 mAh g?1 (based on sulfur weight) and preserves at 598.3 mAh g?1 after 195 cycles at 1C. It achieves a high-capacity retention of 76.27 % from the 5th to 200th cycle, and as high as 91.19 % during the latter 150 cycles. The improvement is mainly attributed to the favorable structure of the S/C composite, in which the carbon cannot only facilitate transport of electrons and Li+ ions but also trap polysulfides and retard the shuttle effect during charge/discharge process.  相似文献   

10.
Polyaniline encapsulated silicon (Si/PANI) nanocomposite as anode materials for high-capacity lithium ion batteries has been prepared by an in situ chemical polymerization of aniline monomer in the suspension of Si nanoparticles. The obtained Si/PANI nanocomposite demonstrates a reversible specific capacity of 840 mAh g?1 after 100 cycles at a rate of 100 mA g?1 and excellent cycling stability. The enhanced electrochemical performance can be due to that the polyaniline (PANI) matrix offers a continuous electrically conductive network as well as enhances the compatibility of electrode materials and electrolyte as a result of suppressing volume stress of Si during cycles and preventing the agglomeration of Si nanoparticles.  相似文献   

11.
Li–S battery is an attractive electrochemical energy storage system because of its high energy density. However, its commercialization has been greatly affected by the poor cycle life and low rate performance, which is attributed to the dissolution of polysulfides and their shuttle effects. In this study, titanium dioxide particles with a large amount of exposed {001} facets (TDPEF) were prepared by alcohol-thermal method. The as-prepared TDPEF achieved a relatively high specific surface area of 92 m2 g?1 and a pore volume of 0.27 cm g?1. Sulfur was mixed with the TDPEF to form TDPEF/S composite by a melt diffusion process. The TDPEF/S composite exhibits much excellent discharge capacity retention of 80 % after 100 cycles compared with pure sulfur at a high current rate of 0.5 C, and it still has a discharge capacity as high as 530 mAh g?1 even at the current rate of 4 C.  相似文献   

12.
Mesoporous carbons (MCs) were used as the matrixes to load sulfur for lithium sulfur (Li-S) batteries, and pore sizes were tuned by heat treatment at different high temperatures. The cathode material shows the highest discharge capacity of 1158.2 mAh g?1 at the pore size of 4.1 nm among as-prepared nitrogen-free materials with different sizes. Meanwhile, the nitrogen doping of mesoporous carbon helps to inhibit the diffusion of polysulfide species via an enhanced surface adsorption. The carbon/sulfur containing N (4.56%) shows a high initial discharge capacity of 1315.8 mAh g?1 and retains about 939 mAh g?1 after 100 cycles at 0.2 C. The improved electrochemical performance is ascribed to the proper pore size, surface chemical property, and conductivity of the N-doped carbon material.  相似文献   

13.
Hierarchically structured tin oxide/reduced graphene oxide (RGO)/carbon composite powders are prepared through a one‐pot spray pyrolysis process. SnO nanoflakes of several hundred nanometers in diameter and a few nanometers in thickness are uniformly distributed over the micrometer‐sized spherical powder particles. The initial discharge and charge capacities of the tin oxide/RGO/carbon composite powders at a current density of 1000 mA g?1 are 1543 and 1060 mA h g?1, respectively. The discharge capacity of the tin oxide/RGO/carbon composite powders after 175 cycles is 844 mA h g?1, and the capacity retention measured from the second cycle is 80 %. The transformation during cycling of SnO nanoflakes, uniformly dispersed in the tin oxide/RGO/carbon composite powder, into ultrafine nanocrystals results in hollow nanovoids that act as buffers for the large volume changes that occur during cycling, thereby improving the cycling and rate performances of the tin oxide/RGO/carbon composite powders.  相似文献   

14.
A facile, one‐pot method for synthesizing spherical‐like metal sulfide–reduced graphene oxide (RGO) composite powders by spray pyrolysis is reported. The direct sulfidation of ZnO nanocrystals decorated on spherical‐like RGO powders resulted in ZnS–RGO composite powders. ZnS nanocrystals with a size below 20 nm were uniformly dispersed on spherical‐like RGO balls. The discharge capacities of the ZnS–RGO, ZnO–RGO, bare ZnS, and bare ZnO powders at a current density of 1000 mA g?1 after 300 cycles were 628, 476, 230, and 168 mA h g?1, respectively, and the corresponding capacity retentions measured after the first cycles were 93, 70, 40, and 21 %, respectively. The discharge capacity of the ZnS–RGO composite powders at a high current density of 4000 mA g?1 after 700 cycles was 437 mA h g?1. The structural stability of the highly conductive ZnS–RGO composite powders with ultrafine crystals during cycling resulted in excellent electrochemical properties.  相似文献   

15.
The free-standing and binder-free electrode materials, cotton/graphene (CGN) composites were prepared via a simple “dipping and freeze-drying” process using raw cotton as the supporting body (platform) and graphene oxide (GO) as the suspension. Then the cotton/GO (CGO) composites were annealed at 1000 °C under an Ar flow conditions to obtain CGN composites. The results show that the CGN structure can protect the cotton framework and have better thermal stable property than the cotton alone. Galvanostatic charge–discharge tests demonstrated that the GO concentration had great effects on their electrochemical performances. The CGN (for the GO with 3 and 5 mg ml?1) provide reversible discharge capacity of 160 mAh g?1 after 100 cycles, which is about 1.5 times higher than that of the cotton alone (115 mAh g?1 after 100 cycles). Excellent electrochemical properties of CGN can be ascribed to its controllable structure with more lithium ion storage sites, high electronic conductivity, and fast ion diffusion velocity. The results suggest that this work develops a simple, cheap, and suitable large-scale production method in the lithium-ion batteries.  相似文献   

16.
Crosslinked-polyaniline (CPA) nano-pillar arrays adsorbed on the surface of reduced graphene oxide (RGO) sheets were synthesized by in situ solution polymerization through two steps of reduction. The electrochemical analyses demonstrated that the befittingly reduced CPA/RGO composite exhibited high performance as electrode materials for supercapacitors. The CPA/RGO composite showed very high specific capacitance of 1532 F g?1 at a scan rate of 10 mV s?1 or 694 F g?1 at a current density of 2 A g?1 in 1 M H2SO4 electrolyte, as well as great energy density of 61.4 W h kg?1 at a current density of 2 A g?1. The electrode material also had decent power density of 4 kW kg?1 at a current density of 10 A g?1, and good cycling stability of 92.5 % capacitance retained after 500 cycles of cyclic voltammetry at 500 mV s?1. The neat microstructures and super electrochemical properties suggest the potential use of the composites in supercapacitors.  相似文献   

17.
Graphene nanosheets, polyaniline (PANI), and nanocrystallites of transition metal ferrite {Fe3O4 (Mag), NiFe2O4 (NiF), and CoFe2O4 (CoF)} have been prepared and characterized via XRD, FTIR, SEM, TEM, UV–vis spectroscopy, cyclic voltammetry, galvanostatic charge discharges, and impedance spectroscopy. Electrochemical measurements showed that supercapacitances of hybrid electrodes made of the ternary materials are higher than that of hybrid electrode made of binary or single material. The ternary hybrid CoF/graphene (G)/PANI electrode exhibits a highest specific capacitance reaching 1123 Fg?1, an energy density of 240 Wh kg?1 at 1 A g?1, and a power density of 2680 Wkg?1 at 1 A g?1 and outstanding cycling performance, with 98.2% capacitance retained over 2000 cycles. The extraordinary electrochemical performance of the ternary CoF/G/PANI hybrid can be attributed to the synergistic effects of the individual components. The PANI conducting polymer enhances an electron transport. The Ferrite nanoparticles prevent the restocking of the carbon sheets and provide Faradaic processes to increase the total capacitance.  相似文献   

18.
In this paper, porous carbon was synthesized by an activation method, with phenolic resin as carbon source and nanometer calcium carbonate as activating agent. Sulfur–porous carbon composite material was prepared by thermally treating a mixture of sublimed sulfur and porous carbon. Morphology and electrochemical performance of the carbon and sulfur–carbon composite cathode were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and galvanostatic charge–discharge test. The composite containing 39 wt.% sulfur obtained an initial discharge capacity of about 1,130 mA?h g?1 under the current density of 80 mA?g?1 and presented a long electrochemical stability up to 100 cycles.  相似文献   

19.
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge–discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g?1 is obtained. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g?1. The rate capability study suggests that the sample provides about 150 mAh g?1 at a specific discharge current of 1.25 A g?1. Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.  相似文献   

20.
To get a high sulfur loaded porous carbon/sulfur cathode material with an excellent performance, we investigated four different sulfur loading treatments. The samples were analyzed by the Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD) patterns, thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). We proved that it is more effective to introduce the sulfur into the pores of porous carbon at 300 °C than at 155 °C. Especially, the porous carbon/sulfur composite heated in a sealed reactor at 300 °C for 8 h presents a fine sulfur load with sulfur content of 78 wt.% and exhibits an excellent electrochemical performance. The discharge capacity is 760, 727, 744, 713, and 575 mAh g?1 of sulfur at a current density of 80, 160, 320, 800, and 1,600 mA g?1 based on the sulfur/carbon composite, respectively. What is more, there is almost no decay at the current density of 800 mA g?1 for 50 cycles and coulombic efficiency remains over 95 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号