首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

2.
The photoluminescence properties of individual ZnO nanorods, grown by atmospheric pressure metalorganic chemical vapor deposition (APMOCV) and chemical bath deposition (CBD) are investigated by means of temperature dependent micro-PL. It was found that the low temperature PL spectra are driven by neutral donor bound exciton emission D0X, peaked at 3.359 and 3.363 eV for APMOCVD and CBD ZnO nanorods, respectively. The temperature increase causes a red energy shift of the peaks and enhancement of the free excitonic emission (FX). The FX was found to dominate after 150 K for both samples. It was observed that while APMOCVD ZnO nanorods possess a constant low signal of visible deep level emission with temperature, the ZnO nanorods grown by CBD revealed the thermal activation of deep level emission (DLE) after 130 K. The resulting room temperature DLE was a wide band located at 420–550 nm. The PL properties of individual ZnO nanorods can be of importance for their forthcoming application in future optoelectronics and photonics.  相似文献   

3.
The effects of NaCl electrolyte concentrations in the range 6-48 mM on the galvanic deposition of ZnO in Zn(Ac)2 electrolyte is presented. Effects of thermal annealing on their structural and optical properties have been investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) microanalysis and photoluminescence (PL). The results show that the increase of NaCl electrolyte concentration not only results in the increase of the diameter of ZnO nanorods, but also promotes the blue-shift of UV emission of ZnO. After air annealing at 200 °C, 300 °C and 400 °C, the UV emission is first enhanced then quenched sharply, while the visible emission tends to be enhanced tremendously. It can be ascribed to the new defect states introduced in ZnO after annealing at high temperature.  相似文献   

4.
A simple growth route towards ZnO thin films and nanorods   总被引:1,自引:0,他引:1  
Highly orientated ZnO thin films and the self-organized ZnO nanorods can be easily prepared by a simple chemical vapor deposition method using zinc acetate as a source material at the growth temperature of 180 and 320 °C, respectively. The ZnO thin films deposited on Si (100) substrate have good crystallite quality with the thickness of 490 nm after annealing in oxygen at 800 °C. The ZnO nanorods grown along the [0001] direction have average diameter of 40 nm with length up to 700 nm. The growth mechanism for ZnO nanorods can be explained by a vapor-solid (VS) mechanism. Photoluminescence (PL) properties of ZnO thin films and self-organized nanorods were investigated. The luminescence mechanism for green band emission was attributed to oxygen vacancies and the surface states related to oxygen vacancy played a significant role in PL spectra of ZnO nanorods.  相似文献   

5.
ZnO films with strong c-axis-preferred orientation have been prepared by a single source chemical vapor deposition technique using zinc acetate as source material at the growth temperature of 230 °C. The strong UV and blue emissions were observed in the photoluminescence spectra of as-grown films. A small quantity of residual zinc acetate was reserved on the surface of as-grown ZnO films and the emission mechanism of blue luminescence was nearly related to the CH3COO- of unidentate type. The blue emission disappeared and the green emission appeared after annealing treatment. The green emission is related to the singly ionized oxygen vacancies.  相似文献   

6.
ZnO thin films were epitaxially grown on sapphire (0 0 0 1) substrates by radio frequency magnetron sputtering. ZnO thin films were then annealed at different temperatures in air and in various atmospheres at 800 °C, respectively. The effect of the annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL). A strong (0 0 2) diffraction peak of all ZnO thin films shows a polycrystalline hexagonal wurtzite structure and high preferential c-axis orientation. XRD and AFM results reveal that the better structural quality, relatively smaller tensile stress, smooth, uniform of ZnO thin films were obtained when annealed at 800 °C in N2. Room temperature PL spectrum can be divided into the UV emission and the Visible broad band emission. The UV emission can be attributed to the near band edge emission (NBE) and the Visible broad band emission can be ascribed to the deep level emissions (DLE). By analyzing our experimental results, we recommend that the deep-level emission correspond to oxygen vacancy (VO) and interstitial oxygen (Oi). The biggest ratio of the PL intensity of UV emission to that of visible emission (INBE/IDLE) is observed from ZnO thin films annealed at 800 °C in N2. Therefore, we suggest that annealing temperature of 800 °C and annealing atmosphere of N2 are the most suitable annealing conditions for obtaining high quality ZnO thin films with good luminescence performance.  相似文献   

7.
We have developed a simple N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)-assisted hydrothermal route for the production of ZnO one-dimensional (1D) nanostructures on zinc foil at reaction temperature of 160 °C. With the increase of CTAB concentration, the one-dimensional structures change from microrod to a mixture of nano- and microrod and finally to nanorods. X-ray diffraction studies confirmed the proper phase formation of the grown nanostructures. The room temperature photoluminescence spectra showed that ZnO nanostructures prepared with increased CTAB concentration exhibited enhanced band edge UV emission and also blue shift of the emission peak. All the samples show no defect related green emission. Field emission property of the 1D structures has been investigated in detail. By tuning the CTAB concentration, the field emission property was optimized. The nanorods synthesized with high CTAB showed turn-on and threshold fields of 3.2 and 5 V/μm, respectively, which are comparable to the values for vapour phase synthesized high field emitting ZnO nanostructures.  相似文献   

8.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

9.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

10.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

11.
The Ge/ZnO multilayer films have been prepared by rf magnetron sputtering. The effects of annealing on the microstructure and photoluminescence properties of the multilayers have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectrometry and photoluminescence (PL) spectrometry. The investigation of structural properties indicates that Zn2GeO4 has been formed with (2 2 0) texture and Zn deficiency from Ge/ZnO multilayer films in the process of annealing. However, lower Zn/Ge ratio can be improved by annealing. The annealed multilayers show three main emission bands at 532, 700, and 761 nm, which originate from the transition between oxygen vacancy () and Zn vacancies (VZn), the radiative recombination of quantum-confined excitons (QCE) in Ge nanocrystals, and the optical transition in the GeO color centers, respectively. Finally, the fabrication of thin film Zn2GeO4 from Ge/ZnO multilayer films by annealing at low temperature provides another approach to prepare the green-emitting oxide phosphor film:Zn2GeO4:Mn.  相似文献   

12.
Chemical spray pyrolysis was applied to grow ZnO nanorod arrays from zinc chloride solutions with pH=2 and 5 on glass/ITO substrate at 480 and 550 °C. The obtained structures were characterized by their morphological, electrical and PL properties. According to SEM, deposition of acidic solutions retards coalescence of the growing crystals. The charge carrier density in ZnO nanorods was determined from the C-V characteristics of ZnO/Hg Schottky barrier. Carrier densities ∼1015 cm−3 and slightly above 1016 cm−3 were recorded for ZnO deposited at 550 and 480 °C, respectively. According to PL studies, intense UV-emission is characteristic of ZnO independent of growth temperature, the concentration of oxygen vacancy related defects is lower in ZnO nanorods deposited at 550 °C. Solution pH has no influence on carrier density and PL properties.  相似文献   

13.
Al-doped ZnO (ZnO:Al) thin films with c-axis preferred orientation were deposited on glass substrates using the radio frequency reactive magnetron sputtering technique. The effect of Al concentrations on the microstructure and the luminescence properties of the ZnO:Al thin films were studied by atomic force microscopy (AFM), X-ray diffraction (XRD), and fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted by appropriate Al concentrations; the photoluminescence spectra (PL) of the samples were measured at room temperature. Strong blue peak located at 437 nm (2.84 eV) and two weak green peaks located at about 492 nm (2.53 eV) and 524 nm (2.37 eV) were observed from the PL spectra of the four samples. The origin of these emissions was discussed. In addition, absorption and transmittance properties of the samples were researched by UV spectrophotometer; the UV absorption edge shifted to a shorter wavelength first as Al was incorporated, and then to a longer wavelength with the increasing Al concentrations. The optical band gaps calculated based on the quantum confinement model are in good agreement with the experimental values.  相似文献   

14.
Zinc oxide doped with Al (AZO) thin films were prepared on borosilicate glass substrates by dip and dry technique using sodium zincate bath. Effects of doping on the structural and optical properties of ZnO film were investigated by XRD, EPMA, AFM, optical transmittance, PL and Raman spectroscopy. The band gap for ZnO:Al (5.0 at. wt.%) film was found to be 3.29 eV compared with 3.25 eV band gap for pure ZnO film. Doping with Al introduces aggregation of crystallites to form micro-size clusters affecting the smoothness of the film surface. Al3+ ion was found to promote chemisorption of oxygen into the film, which in turn affects the roughness of the sample. Six photoluminescence bands were observed at 390, 419, 449, 480, 525 and 574 nm in the emission spectra. Excitation spectra of ZnO film showed bands at 200, 217, 232 and 328 nm, whereas bands at 200, 235, 257 and 267 nm were observed for ZnO:Al film. On the basis of transitions from conduction band or deep donors (CB, Zni or VOZni) to valence band and/or deep acceptor states (VB, VZn or Oi or OZn), a tentative model has been proposed to explain the PL spectra. Doping with Al3+ ions reduced the polar character of the film. This has been confirmed from laser Raman studies.  相似文献   

15.
Self-assembled Ni-doped zinc oxide (Zn1−xNixO, x = 0.05, 0.10, 0.15, i.e., ZnNiO, nominal composition) nanorod arrays vertically grown on the ZnO seed layer covered glass along [0 0 1] direction were synthesized by hydrothermal method. Their images and structures have been characterized by scan electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra, showing that Ni doping is beneficial to the formation of ZnO nanorods with hexagonal cross section and the enhancement of ZnO crystal quality. X-ray photoemission spectroscopy (XPS) study further demonstrated that Ni atoms were successfully doped into ZnO lattices. The photoluminescence (PL) spectra of ZnNiO samples show near bandedge emission (NBE) peaks at about 380 nm at a low excitation power and the NBE peak position redshifts while its intensity continuously increases with the increase of Ni doping concentration. With the excitation power increasing, the NBE peak redshifts from 380 nm to about 400 nm for ZnNiO nanorod arrays. The NBE mechanisms for ZnNiO nanorod arrays have been discussed, which is helpful for understanding their room temperature ferromagnetisms.  相似文献   

16.
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 °C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19° with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 °C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed.  相似文献   

17.
ZnO nanorods and nanodisks were formed on indium-tin-oxide-coated glass substrates by using an electrochemical deposition method. Scanning electron microscopy images showed that the ZnO nanorods were transformed into nanodisks with increasing Zn(NO3)2 concentration. X-ray diffraction patterns showed that the ZnO nanostructures had wurzite structures. The full widths at half maxima of the near band-edge emission peak of photoluminescence spectra at 300 K for ZnO nanorods were small, indicative of the high quality of the nanorods. These results indicate that the structural and the optical properties of ZnO nanostructures vary by changing Zn(NO3)2 concentration.  相似文献   

18.
We have synthesized GaN-core/ZnO-shell nanowires and investigated effects of the ZnO coating. The X-ray diffraction pattern showed that as-synthesized samples are composed of GaN and ZnO. Transmission electron microscopy indicated that the deposited ZnO shell layer is poly-crystalline. The photoluminescence (PL) spectrum of GaN has been changed by the ZnO coating, where emission bands centered at roughly 1.9 eV, 2.5 eV, and 3.3 eV were newly added to the emissions from core GaN nanowires. We found that overall PL intensity has been significantly increased by coating the ZnO shell layers.  相似文献   

19.
High quality vertical-aligned ZnO nanorod arrays were synthesized by a simple vapor transport process on Si (111) substrate at a low temperature of 520 °C. Field-emission scanning electron microscopy (FESEM) showed the nanorods have a uniform length of about 1 μm with diameters of 40-120 nm. X-ray diffraction (XRD) analysis confirmed that the nanorods are c-axis orientated. Selected area electron diffraction (SAED) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) measurements were adopted to analyze the optical properties of the nanorods both a strong UV emission and a weak deep-level emission were observed. The optical properties of the samples were also tested after annealing in oxygen atmosphere under different temperatures, deep-level related emission was found disappeared at 600 °C. The dependence of the optical properties on the annealing temperatures was also discussed.  相似文献   

20.
High-purity ZnO nanowires have been synthesized on Si substrates without the presence of a catalyst at 600 °C by a simple thermal vapor technique. Photoluminescence (PL) spectra of the annealed samples at 900 °C under oxygen and argon gases have been investigated. After O2 or Ar annealing, the PL visible-emission intensity that is related to intrinsic defects (oxygen vacancies) is greatly reduced compared with as-grown ZnO nanowires because the oxygen-gas ions or oxygen interstitials diffuse into the oxygen vacancies during annealing process. The blue-band peak of the O2- or Ar-annealed ZnO naonowires is also smaller than the green-band peak in the visible broadband because of the reduction of oxygen vacancies. Therefore, the main intrinsic defects (oxygen vacancies) of as-grown ZnO nanowires can be reduced by O2 or Ar annealing, which is an important procedure for the development of advanced optoelectronic ZnO nanowire devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号