首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
相比汽油车而言,柴油车具有高效、低油耗的优势已得到广泛应用。本实验以ZrO2作为改性剂,探究了ZrO2与Al2O3的质量比对催化剂的影响。研究结果表明:随着ZrO2的加入,Pt粒子先减小后增大;Pt粒子与载体的交互作用先增大后减小。活性实验数据分析表明,ZrO2的最佳添加量为40 wt%,CO和C3H6完全氧化温度分别降低20 oC 、25 oC。贵金属在催化剂的分散度以及贵金属与载体的相互作用随着ZrO2与Al2O3质量比的变化而变化。Pt粒子越小,其与载体的交互作用越强,这表明催化剂性能越强。  相似文献   

2.
In a study of the phenomenon of catalyst deactivation during storage, Au/TiO2 catalyst was stored under various conditions, viz. vacuum, nitrogen, air, refrigeration, dark, and light, and tested for CO oxidation activity at regular intervals. The data shows that the catalyst deactivates under all the storage conditions over 12 months and that storage in vacuum significantly enhances the rate and extent of deactivation. Storage in light accelerates the deactivation. The catalyst appears to deactivate through a combination of Au(III) reduction, Au nanoparticle agglomeration, loss of surface hydroxyl groups, loss of surface moisture, and accumulation of surface carbonates and formates. The rate and extent of catalyst deactivation can be limited by storing the catalyst in the dark at sub ambient temperature (refrigerator) and under inert atmosphere.  相似文献   

3.
李慕勤  马臣  谭伟  邵德春  郭面焕 《焊接学报》2003,24(3):59-60,64
在8%Y2O3稳定的ZrO2陶瓷涂层中添加SiO2,使陶瓷涂层的抗热震性能得到提高,这主要是SiO2的加入使涂层抗热震前后的表面形貌发生了很大的变化。由于ZrO2与SiO2热膨胀系数不同,使涂层利于产生细微的网状裂纹,增加了微裂纹密度和孔隙,从而降低了涂层的弹性模量,释放了涂层中的应力,使涂层的抗热震失效能力得到提高。其中,SiO2加入量为3%(质量分数)效果最佳,过量的加入,会使孔洞加大,促进裂纹的扩展、断裂,不利于提高涂层的抗热震性能。  相似文献   

4.
Selective catalytic reduction of NO by propene under an oxygen-rich atmosphere has been investigated over Au/ CeO2, Au/CeO2/Al2O3 and Au/Al2O3 catalysts prepared by deposition-precipitation. The results demonstrated that Au/16%CeO2/Al2O3 had good low-temperature activity, selectivity towards N2 and stability, which is superior to that of Pt/Al2O3. It was also found that adding 2% water vapour to the feed stream enhanced the NO conversions at low temperatures while the presence of 20 ppm SO2 increased NO conversions at higher temperatures. It is particularly interesting that under the simultaneous presence of 2% water vapour and 20 ppm SO2, the NO conversions to N2 were significantly increased and the temperature window was widened significantly. The catalysts were characterized by Xray diffraction (XRD), high resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (HRTEM-EDX) and temperatureprogrammed reduction (H2-TPR) techniques. Both XRD and HRTEM revealed that CeO2 was highly dispersed on the alumina support, and HRTEM combined with EDX showed that gold particles were preferentially deposited on those highly dispersed CeO2 particles. The gold deposition made CeO2 more reducible and interaction between gold and those highly dispersed CeO2 particles became stronger than that with the bulk CeO2, and this interaction is probably responsible for the superior catalytic performance of the Au/CeO2/Al2O3.  相似文献   

5.
Gold catalysts were prepared on TiO2 supports of different phase structures (i.e., anatase, rutile and biphasic), TiO2 crystal size (i.e., 9–23 nm), surface and textural properties (i.e., hydration and surface area). The CO oxidation on the gold catalysts was carried out in an operando-DRIFTS set-up equipped with DRIFTS reactor cell connected on-line to CO gas analyser and gas chromatograph enabling real time monitoring of surface reaction and simultaneous reaction rate measurements. Gold catalysts supported on pure anatase TiO2 were more resistant to sintering compared to catalysts supported on rutile and bi-phasic TiO2. Besides catalyst sintering, deposition of surface carbonates is an important cause of catalyst deactivation. The best gold catalyst was prepared on 13 nm anatase TiO2. It displays both increased activity and stability for CO oxidation reaction at room temperature. Surface and textural properties of TiO2 also play a role on the performance of the Au/TiO2 catalyst.  相似文献   

6.
The present work investigates the electrochemical formation of self-organized high aspect ratio TiO2 and ZrO2 nanotube layers. The formation and growth of a self-organized porous layer can be achieved directly by anodization without any templates in fluoride containing electrolytes. The morphology of the porous layers is affected by the electrochemical conditions such as the electrolyte composition, the pH and the exact polarization treatment (such as the potential sweep rate from the open-circuit potential to the anodizing potential). For Ti, nanotube layers are formed with diameters varying from approx. 20 nm to 100 nm and lengths from approx. 0.25 μm to 2.5 μm depending on the electrolytes and pH. On the other hand, for Zr, tubes of 50 nm in diameter and up to approx. 17 μm in length can be grown—a key parameter in this case is the potential sweep rate. The large difference between Ti and Zr in the achievable thickness of nanotube layers indicates a difference in the growth mechanism which may be based on the different chemical dissolution rates of electrochemically formed oxides.  相似文献   

7.
A mixture of magnesium, boric oxide and zirconium dioxide were mechanically milled under argon for up to 15 h in a laboratory scale ball mill. X-ray diffraction showed that there was an increasing conversion of ZrO2 to ZrB2 with milling time with >98% reaction after 15 h. Differential thermal analysis revealed there were multiple, overlapping reactions all of which seemed to be formation of ZrB2. The energy evolved decreased with milling time and the sample after 15 h milling showed no thermal reaction. After milling, separation of the ZrB2 from the coproduct MgO was easily achieved by a mild acid leaching leaving essentially pure ZrB2 with a crystallite size of 75 nm.  相似文献   

8.
A series of Colossal Magneto Resistance materials, with compositional formula (1 − x) La0.67Ca0.33MnO3 + xZrO2 (where x = 0%, 10%, 20%, 40%, 60%, 80%) were prepared by sol–gel technique. When characterized structurally by X-ray diffraction they are found to have cubic structure. After measuring their bulk densities, the ultra sonic longitudinal (Vl) and shear velocities (Vs) were measured at room temperature using the pulse transmission technique. Using the ultrasonic data, the values of Young's and rigidity moduli along with Poisson's ratio and Debye temperatures have been calculated. As the materials are porous, zero porous elastic moduli have also been arrived at using a well-known model. The observed variation of elastic moduli with varying ZrO2 concentration has been explained qualitatively.  相似文献   

9.
Specific surface structures of ZrO2 + TiO2 (I) and ZrO2 +CeOx + TiO2 (II) coatings on titanium before and after annealing at 850°C for 24 h in air are studied. Whiskers are found on the surface of type-I coatings before annealing, and perfectly edged crystals composed of TiO2 and ZrO2 oxides are found upon annealing. Pores in both coatings have a multilevel structure. In the case of type-I coatings, orifices of pores are covered with titanium. In type-II coatings, pore orifices contain titanium, zirconium, and oxygen. Oxygen deficiency implies that titanium and zirconium are present in pore orifices in metallic state. In type-II coatings, the surface distribution of cerium is heterogeneous. Mechanical treatment of the annealed coatings causes their exfoliation from the substrate metal. In the case of both coatings, the exfoliating surfaces are composed of TiO2 blocks containing excess oxygen.  相似文献   

10.
Caixia Qi 《Gold bulletin》2008,41(3):224-234
Direct gaseous-phase epoxidation of propylene over nanogold catalysts in co-presence of H2 and O2 has been extensively studied. Many researchers have made important progress in this field, and a survey of the literature published to date is presented in this article. The salient features are the nature of the nanogold particles and the Ti-based support materials.  相似文献   

11.
Coloured Al2O3/ZrO2 multilayers have been deposited onto WC-Co based inserts by a CVD process. Through physical as well as optical analysis of such multilayers, colour is believed to originate from interference. The coatings are obtained with good process reproducibility. It was found that the ZrO2 process used in the multilayer, with ZrCl4 as the only metal chloride precursor, results in a mixture of tetragonal and monoclinic ZrO2 phases. However by adding a relatively small amount of AlCl3 during such a process results in ZrO2 layers being composed of predominantly tetragonal ZrO2 phase. Corresponding multilayers seem to have a more fine grained and smoother morphology whereas multilayers containing monoclinic ZrO2 phase seem to be less perfect with existence of larger grains of ZrO2 which are believed to scatter light and alter the reflectance of such a multilayer. In addition to this, such multilayers were found to be free of or with greatly reduced amount of thermal cracks, normally present in pure CVD grown Al2O3 layers.It is believed that, in the studied Al2O3/ZrO2 multilayers, the observed tetragonal ZrO2 phase is the result of a size effect, where small enough ZrO2 crystallites energetically favor the tetragonal phase. However as the ZrO2 crystallite size distribution is shifted to larger sizes it is believed that a mixture of crystallites with both stable and metastable tetragonal phases as well as a stable monoclinic phase is obtained. The proposed metastable tetragonal ZrO2 phase may in fact explain the absence of thermal cracks in such multilayers through a transformation toughening mechanism, well known in ZrO2 based ceramics.  相似文献   

12.
Different metal/ceramic composites (Al7Si0.3Mg, Al3Ni, Al6Ni, Al9Ni) reinforced with Al2O3 or ZrO2 were prepared by vortex method. Metallographic investigations reveal that in all the composites -Al did not nucleate on the reinforcement particulates. The particulates were generally observed to be located in the last freezing regions regardless of matrix alloy, particulate type or size. The reason for that was the mismatch in the thermal diffusivity between the ceramic particulates and matrix alloys. SEM micrographs show that the presence of the particulates in the AlSi alloy tends to modify the silicon eutectic. In contrast, the addition of the particulates into AlNi alloys did not result in a significant modification of the NiAl3 phase, but it displaced the eutectic point to lower Ni content.  相似文献   

13.
Thermodynamically, ZrO2 may react with boron to form B2O3/B2O2 and ZrB2 at room temperature. However, this reaction is incomplete at temperatures lower than 1550 °C, even with the use of metastable reactants, i.e., as-synthesized amorphous hydrous nano-ZrO2 and amorphous boron powders. In this study, a complete disintegration of ZrO2 was achieved by introducing nanocarbon to the binary system of ZrO2 and boron at 1550 °C. The metastable reactants affected the temperature required for the solid-state reactions and also strongly affected the kinetics of the transformation. Single crystal and plate-like ZrB2 particles with a uniform distribution and a size of ca. 1.0 μm in two-dimensions were obtained using 5 wt.% nanocarbon and a B/Zr molar ratio of 4.  相似文献   

14.
ZrO2+SiC颗粒强韧化MoSi2复合材料的显微组织和性能   总被引:1,自引:0,他引:1  
《材料热处理学报》2000,21(4):18-22
通过显微组织观察和力学性能测试,初步探讨了ZrO2+SiC颗粒对MoSi2基体材料的强韧化效果和机制.结果表明,材料复合具有较好的强韧化协同效应,复合材料中ZrO2相和少量SiC颗粒在基体的间层作用,可抑制MoSi2晶粒长大;断口呈现晶粒细小、裂纹扩展曲折和沿晶与穿晶混合型断裂等特征;ZrO2+SiC颗粒通过弥散强化和细化晶粒使复合材料强度提高,通过晶粒细化、裂纹偏转和分支、微裂纹形成等机制的综合作用使复合材料增韧.  相似文献   

15.
An examination of the ZrO2-YO1.5-TaO2.5 system reveals several promising attributes for use in thermal barrier coating applications. The rather unique presence of a stable, non-transformable tetragonal region in this ternary oxide system allows for phase stability to high temperatures (1500 °C). Selected compositions with high levels of yttria and tantala have also shown superior resistance to vanadate corrosion than the commercially utilized 7YSZ. In addition, Y + Ta stabilized zirconia compositions within the non-transformable tetragonal phase field exhibit toughness values comparable or somewhat higher than those of 7YSZ, which bodes well for their durability as TBCs. These promising attributes are discussed in this paper in the context of recent experimental work.  相似文献   

16.
The effects of La2O3 addition on thermal conductivity, phase stability and thermal cycle life of Y2O3 stabilized ZrO2 plasma sprayed coatings were investigated. Although low thermal conductivity as well as high resistance to sintering was achieved by La2O3 addition, it tended to also result in lower phase stability and thermal cycle life of the coatings. Optimization of the composition and structure of the coatings improved these properties, and the optimized coatings showed prolonged thermal cycle life.  相似文献   

17.
The increasing demand for clean energy and growing concerns regarding environmental sustainability have led to greater attention devoted toward the production of clean fuels via green chemistry.In this respect,ammonia is a green alternative to fossil fuels and can serve as a clean energy source.There is now great interest in realizing the electrochemical reduction in atmospheric nitrogen(N2) for cheap,environmentally friendly and reliable ammonia(NH3) production worldwide.H...  相似文献   

18.
The behavior of dielectric and microwave properties against sintering temperature has been carried out on CaO-SiO2-B2O3 ceramic matrix composites with ZrO2 addition. The results indicated that ZrO2 addition was advantageous to improve the dielectric and microwave properties. X-ray diffraction (XRD) patterns show that the major crystalline β-CaSiO3 and a little SiO2 phase existed at the temperature ranging from 950 °C to 1050 °C. At 0.5 wt% ZrO2, CaO-SiO2-B2O3 ceramic matrix composites sintered at 1000 °C possess good dielectric properties: ?r = 5.85, tan δ = 1.59 × 10−4 (1 MHz) and excellent microwave properties: ?r = 5.52, Q · f = 28,487 GHz (11.11 GHz). The permittivity of Zr-doped CaO-SiO2-B2O3 ceramic matrix composites exhibited very little temperature dependence, which was less than ±2% over the temperature range of −50 to 150 °C. Moreover, the ZrO2-doped CaO-SiO2-B2O3 ceramic matrix composites have low permittivity below 5.5 over a wide frequency range from 20 Hz to 1 MHz.  相似文献   

19.
采用SEM,EPMA和热震方法,研究了CeO2添加剂对等离子喷涂ZrO2i涂层抗热震性能的影响。结果表明:当CeO2由0增加到9.0%(质量分数,下同)时,涂层的抗热震起裂次数和失效次数分别由32次和46次增加到76次和105次;继续增加CeO2,涂层的抗热震性能急剧下降。ZrO2 9.0?O2涂层在热循环中形成的网状微裂纹,不仅可降低涂层中的应力,也可提高涂层开裂的临界温差,从而可改善其抗热震性能。  相似文献   

20.
New findings give further information on the mechanism of carbon monoxide selective oxidation over γ-alumina supported nanoparticle sized gold catalysts. a) CO2 formation, increasing with rising temperature, is observed in the absence of hydrogen and oxygen pointing to a model of active sites consisting of an ensemble of metallic Au atoms and a cationic Au with a hydroxyl group, b) At high temperatures (>200 °C) in excess of H2, reversed water gas shift (RWGS) reaction results in CO2 consumption towards CO and H2O formation. c) Hydrogen strongly influences the interaction of CO on Auγ-Al2O3, by weakening the CO adsorption. The presence of hydrogen plays an important role both decreasing the strength of CO bonding and in the prevention of deactivation and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号