首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract

Impurity segregation to grain boundaries in ultra low carbon steel was investigated by Auger electron spectroscopy and SEM during isothermal annealing at 900°C and continuous cooling. The results of isothermal annealing at 900°C show that a concentration peak appears at different times for phosphorus, sulphur, and boron, which is contrary to the equilibrium segregation theory of McLean. The phenomena could be satisfactorily explained by the non-equilibrium segregation theory based on the impurity–vacancy complex mechanism. Under continuous cooling, the segregation concentration at the grain boundary largely depends on the cooling rate. At a low cooling rate the concentration of phosphorus and boron at the grain boundary is higher than that of sulphur, while at the higher cooling rate the concentration of sulphur is higher.  相似文献   

3.
4.
5.
6.
Fracture toughness and fracture of WC-Co composites   总被引:1,自引:0,他引:1  
Critical stress intensity factor, and related parameters have been measured in three-point bending for 18 different combinations of different volume fractions of cobalt (5 to 37%) and grain size of tungsten carbide (0.7, 1.1 and 2.2 m). In particular, a study was made of the correlations between the strength and mechanical and microstructural parameters, such as ¯L Co,C WC, ¯L CoD WC, ¯L Co 2D WC,H V and wear resistance. A hypothesis for the mechanism of fracture has been proposed following an analysis of these results and a study of the mode of fracture.  相似文献   

7.
A model for intergranular segregation/dilution induced by applied stress   总被引:6,自引:0,他引:6  
A model for the effects of low applied stress on grain boundary segregation/dilution of solute has been suggested in the present paper. This model is based on the following assumptions: (1) The grain boundary is a weaker region on strength than the perfect crystalline in the interior of gain and will preferentially be deformed when a polycrystalline is exerted by an low applied stress. (2) Grain boundaries will work as sources of vacancies to emit vacancies when a compression stress is exerted on them and as sinks to absorb vacancies when a tension stress is exerted; (3) Oversaturated vacancies induced by the applied stress will be combined with the solute atoms to form vacancy-solute atom complexes, the diffusion rate of which is far greater than that of solute atoms in matrix; (4) The effects of applied stress on grain boundary segregation/dilution of solute will be controlled by the balance between the complex diffusion and the reverse solute atom diffusion. According to this model, there will be a critical time during stress aging, at which a maximum level of grain-boundary segregation/dilution will occur. This model can be corroborated by Shinoda and Nakamura's observation for phosphorus and Misra's observation for sulfur in steels. It can be expected that a new basis for understanding the low ductility intergranular fracture induced by applied stress will result from this new model.  相似文献   

8.
Erosion behaviour of a range of WC-Co composites is investigated using 200 to 500m Al2O3 grit normally incident at 140±40 m sec–1. A simple relation is obtained linking erosion rateW(g g–1) and hardnessH(M Pa), W = 1.44 × 1011 H –3.5. Current erosion models based on indentation fracture mechanics are not found to apply; an explanation is suggested in terms of an indentation size effect.  相似文献   

9.
Abstract

A533B and C–Mn steels, widely used as nuclear pressure vessel steels, have been aged at 520°C after tempering at 650°C for various periods of time to produce different levels of embrittlement resulting from the segregation of P to grain boundaries. Metallographic observation and tensile test results showed that the embrittlement heat treatment did not have significant influence on the microstructures or tensile properties of the steels. P segregation at grain boundaries and on intergranular facets was investigated using field emission gun transmission electron microscopy and Auger electron spectroscopy. After such treatment, enhanced segregation was found to be a linear function of the square root of embrittling time. Statistical analysis of the AES measurements indicated that there is a minimum segregation level for intergranular fracture to occur.  相似文献   

10.
11.
Both analytical modeling and numerical simulations were performed to analyze residual thermal stresses and coefficients of thermal expansion (CTEs) of intergranular two-phase composites in a two-dimensional sense. A composite-circle model was adopted for analytical modeling. Model microstructures consisting of square-array, hexagon-array, and brick wall-array of grains with an intergranular phase as well as an actual microstructure of random-array grains with an intergranular phase were adopted for numerical simulations. The results showed that in predicting CTEs, the simple analytical model represents the two-dimensional composite well except that with brick wall-array grains, which induced significant anisotropic CTEs in the composite. The residual thermal stresses in composites were also discussed.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Advice is given on the causes of and tests for intergranular corrosion (IGA). This report describes the metallurgist's approach to avoiding the problem and some of the resistant alloys which have been commercialised.  相似文献   

19.
20.
McMahon suggested that interface decohesion at grain-boundary carbides and precipitates is the mechanism of hydrogen assisted intergranular cracking, HAIC, in high strength steels. In general, cleavage of grain-boundary carbides, adhesion failure or interface decohesion at grain-boundary carbides and precipitates, and crack-tip shear slip along the grain boundary could be the mechanisms of HAIC. Hydrogen reduces cleavage strength, adhesion strength and the resistance to shear slip; therefore, hydrogen assists intergranular cracking. A method of identifying such mechanisms is suggested. A generalized theory of hydrogen assisted cracking is deduced. Brittle crystals cleave on their cleavage planes. Cleavage cracking of such crystals is anisotropic. When the crack-tip stress intensity factor, K, is low, the tortuous cracking process from the anisotropy results in rapidly increasing Stage-I crack growth rate with respect to K. The mechanism of the crack growth threshold, KTH, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号