首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
9615号强台风“莎莉”与0814号强台风“黑格比”的路径极为相似,但它们的降雨特征(强度、分布)则差异很大。利用常规的探空和地面资料以及NCEP全球再分析资料,对两强台风的大气环流形势特征、卫星云图以及物理量场诊断进行分析,结果表明:台风与环境场的相互配置是造成两强台风降水差异的直接原因;云图及物理量诊断分析中显示,台风云系的变化以及物理量各因子强度的空间和时间变化能清楚反映两台风降水的差异。  相似文献   

3.
陈豫  艾鸿  赵慧娟  杨丹枫  杨东方 《海洋科学》2015,39(12):112-117
根据1985~1989年的胶州湾水域调查资料,分析有机农药HCH在胶州湾水域的含量大小、年份变化和季节变化。研究结果表明:在1985~1989年期间,水体中HCH的含量全部低于一类海水的水质标准,保持着一类海水水质。在HCH含量方面,在胶州湾整个水域,水质非常的清洁。HCH在胶州湾水体中的含量是很低的0.2095μg/L,就出现了胶州湾水体中HCH含量在年份的变化是振荡的变化,其变化范围为:0.002~0.2095μg/L。而且在一年中季节变化就没有了。然而,水体中HCH的低含量却是长期存在的,很难从环境中消失。  相似文献   

4.
利用莘县1961—2010年的雷暴观测资料,分析了莘县雷暴的气候特征。结果表明:莘县年雷暴日数较多,年平均雷暴日数为24.1天,年际变化较大,年雷暴日数总体呈减少趋势,雷暴发生有明显的季节性变化,只发生在春、夏、秋三个季节,主要发生在夏季,占全年的78.6%,冬季无雷暴。月际分布呈单峰型,主峰出现在7月,次峰出现在8月...  相似文献   

5.
根据1979~1984年(缺少1980年)的胶州湾水域调查资料,分析有机农药六六六(HCH)在胶州湾水域的含量大小、年份变化和季节变化。研究结果表明:在1979~1984年(缺1980年)期间,在胶州湾水体中HCH的含量逐年都在减少。在1983年,中国禁止HCH的使用,在禁用后,水体中HCH的含量全部低于一类海水的水质标准。在禁用后,水体中HCH的含量很低,几乎没有季节变化。因此,中国禁止HCH的使用对环境的改善取得显著的成效。  相似文献   

6.
“黑格比”和“莎莉”两个相似台风暴雨对比分析   总被引:3,自引:0,他引:3  
0814"黑格比"和9615"莎莉",这两个路径相似的台风给防城港造成暴雨的强度和持续时间有很大差别,从天气形势、物理量场分布等方面讨论了它们的降水条件差异,结果表明,造成"黑格比"台风降水较强的主要原因是:有冷空气侵入台风外围;水汽辐合上升到摩擦层以上;高空辐散有利于台风强度维持。另外还发现螺旋度的变化与台风暴雨有较好的对应关系。  相似文献   

7.
本文收集了1960~1990年间的水文气象资料进行累年统计,并参考有关航海资料和海洋图集,详细地对朝鲜海峡进行了分析研究,阐明了该海峡气候及水文特征的变化规律。  相似文献   

8.
本文对2007年8月10~12日山东半岛连续3日的区域性暴雨天气过程进行了分析。环流形势分析表明:热带系统的水汽条件、西风带弱冷空气的抬升条件和副热带高压边缘的不稳定层结条件,共同作用形成了这次明显的暴雨天气;能量场和物理量场分析得出:强降水发生前,山东半岛都存在36℃以上的K指数高能舌和大于60℃的θse高能舌区,对强降水的预报具有一定的指导意义;雷达分析表明:第一阶段的强降水是强风暴引起的,其中尺度系统是飑线和中尺度雨带,当中尺度系统发生合并时,都能使降水强度得到提升;在弱对流降水阶段,当东海低压和低层切变线发生叠加时,能使降水强度大大增强。  相似文献   

9.
本文用合成分析方法,研究了台风(热带气旋)各种不同路径中,低层环境高度场和风场上的差异,提出了可用于业务科指征,经独立样本预报试验表明这些简明指征有较好的预报能力。对这些简明指征可用行业务预报的理论依据和局限性也作了粗略讨论。  相似文献   

10.
根据2008年初中国南方低温冻雨灾害发生的时间和范围定义了中国南方地表气温异常指数(STAI).研究表明,STAI与欧亚大陆的中、高纬度系统和太平洋副热带高压都有很好的相关性,并且中纬度系统在中层占优,高纬度系统在低层占优.根据STAI合成的典型冷(暖)年850和500 hPa欧亚大陆位势高度异常场呈“北正南负”(“南正北负”)型,西太平洋副热带高压减弱(加强),我国南方水汽主要来源于孟加拉湾(南海).2008年STrAI的前期大气环流背景既具有典型冷年的特征:欧亚大陆位势高度异常呈“北正南负”型;又具有典型暖年的特征:西太平洋副热带高压显著增强,中国南方水汽同时来源于孟加拉湾和南海.  相似文献   

11.
基于美国国家冰雪数据中心 (NSIDC) 海冰资料、美国国家环境预报中心 (NCEP) 再分析格点数据和黄渤海近岸13个气象站点逐日气温数据,通过相关分析和合成分析,研究了 2007-2018 年黄渤海海冰范围的变化特征,探讨了近 12 年黄渤海海冰范围对近岸陆地气温、大气环流和局地天气过程的响应。结果表明: (1) 黄渤海海冰范围年际振荡明显,近 12 年呈现先增加后减小的趋势,与同期黄渤海近岸气温呈显著负相关关系;每年 1 月下旬至 2 月下旬是一年中海冰范围最大的时期。(2) 海冰范围偏大与偏小年份东亚地区 500 hPa 大气环流形势呈现出近乎相反的分布。 (3) 东亚阻塞形势的建立是黄渤海海冰范围爆发性增大的一个前兆信号,它带来的大风降温天气是造成黄渤海海冰范围爆发性增大的重要原因.  相似文献   

12.
中街山列岛国家级海洋牧场位于中国浙江省舟山市舟山群岛海域,其建设有利于促进当地渔业发展,保护该海域生态环境。基于中街山列岛国家级海洋牧场附近两个站点2020年10月21日至2021年2月28日期间的海流观测资料,利用调和分析、合成分析等方法,研究了舟山群岛海域冬季流场的时空变化特征及其影响机制。研究结果表明,两站点处潮流均为正规半日潮,以M2和S2占主,各主要分潮潮流均为往复流;潮流、余流流向均为西北-东南流向,与站点所处的狭窄水道主轴方向一致,说明地形因素影响明显;同时,观测站点处水体的垂向平均动量平衡分析表明,在沿水道主轴方向上,余流受盛行风场控制,风场转向会导致余流转向,而在垂直于水道主轴方向上,由于受水道两侧岸线的支撑作用,水体在近岸堆积,故在该方向上主要为正压梯度力与科氏力的平衡,反应了地形对流场特征的影响。研究成果揭示了舟山群岛海域冬季的流场特征及其主要影响机制,对实现此海域内海洋牧场的精细化管理具有指导意义。  相似文献   

13.
0716号超强台风“罗莎”是建国以来登陆浙闽交界最晚的一个台风.它经我国台湾岛东北侧打一个圈后登岛,然后在台湾海峡北上,于浙闽交界处登陆,沿温州海岸线缓慢北上后再次入海.“罗莎”的特殊路径一方面与台风附近物理量场分布有关,另一方面可能与全球气候变暖趋势的背景有关.本文分析发现0716号超强台风“罗莎”登陆大陆前后,其附近中低层的物理量场分布对移动路径有密切关系;美国NCEP再分析资料提供的很多物理量如温度、湿度、垂直速度等热力和动力要素对台风未来移动的路径有指示作用;多普勒雷达径向速度演变趋势对台风的短时移动路径预报也有很好的指导意义.  相似文献   

14.
利用1949~2004年共54 a的热带气旋资料,通过对历年影响我国近海(距海岸线300 n mile范围内)25°N以北及以南热带气旋的基本要素特征值的分析,发现我国近海25°N以北与以南热带气旋影响的频数和年代际变化不一致,尤其是20世纪80年代中期以来呈现反位相特征,近海25°N以北TC偏多,强度强;25°N以南TC偏少,强度弱.对热带气旋个数偏多年与偏少年对应的夏季海温场、高度场的合成分析,发现25°N以北偏多年比以南偏多年的东太平洋海温负距平强度大、范围广,高度距平场上反映出25°N以北偏多年西太平洋(包括南海)负高度距平区更为偏北、偏东;25°N以北TC偏少年时,中东太平洋海温为正距平区,高度场上太平洋低纬区域基本为正距平区,太平洋高纬区域是负距平区,而以南TC偏少年中东太平洋海温是负距平区,高度场上太平洋高纬区域是正距平区.文中还对当年前期各月海温场、高度场与当年以北、以南热带气旋个数分别作了相关分析,得出了一些实用有效的预报因子.  相似文献   

15.
应用1973~1999年南极气温和海冰资料,分别对它们进行了统计分析,结果表明,南极的最低温度中心位于东南极大陆(东方站),这种分布特征是与南极地形相对应的.南极东方站的年平均地面气温是-55.3℃;地面最高气温出现在12月至翌1月,其温度为-32.1℃;地面最低气温出现在8月,其温度为-68.2℃.南极各地区的地面气温具有不同的变化特征.根据温度的变化特征,将南极的气候分为4种类型:南极大陆型、南极半岛型、东南极沿岸型和海湾型.近年来南极半岛的气温有明显升高的趋势,而东南极沿岸的气温有明显下降的趋势,它们的变化呈明显的反位相.南极海冰与南极气温变化有较好的对应关系,气温升高的南极半岛的海冰有减少的趋势,而气温下降的东南极的海冰有增加的趋势.这种结果很难用温室效应来解释南极与全球气候变化的差异.东南极海冰变化与南太平洋的海温场存在密切关系,其影响过程是通过南极海冰范围的异常增加或减少,直接影响南极绕极流的冷暖结构及其异常冷暖水的经向输送,从而导致热带和副热带太平洋上层海温场的异常变化.  相似文献   

16.
选取2014年4月发生的一次黄海近岸海雾个例,利用WRF(Weather Research and Forecasting)模式开展了集合预报试验研究。依据每个集合成员初始场中海平面气压、2 m温度、2 m水汽混合比与2 m相对湿度(relative humidity, RH)4个变量的均方根误差(root mean square error, RMSE)与RMSE集合平均值的相对大小,以剔除高于者而保留低于者的原则,设计了4种不同的初始场集合体择优方案,实施了一系列数值预报试验,比较了不同择优方案的集合预报效果。研究结果表明:(1)蒙特卡罗方法所生成的集合体中存在不少海雾预报效果较差的成员,这会降低集合预报效果,因此初始场择优十分必要;(2)以RH作为择优变量的择优方案(记为RH-RMSE方案),集合预报效果明显优于其他3种方案;(3)对比不择优集合预报,采用RH-RMSE方案的择优集合预报效果不仅节省了50%左右的计算时间,并且公正预兆评分(equitable threat score,ETS)改进率高达36%左右。本研究提出的RH-RMSE方案具有业务化应用前景。  相似文献   

17.
魏硕  张永莉  聂红涛  魏皓 《海洋学报》2022,44(5):92-101
波弗特海海冰的剧烈变化对区域内生态系统以及经济活动具有重要影响。基于美国国家冰雪数据中心发布的海冰密集度数据,本文对2019年波弗特海夏季海冰面积出现极端低值的机制进行了探讨。2019年融冰季(5–9月)海冰覆盖面积为1.38×105 km2,远低于1998–2020年平均面积2.28×105 km2,统计2019年前秋(2018年10–12月)和前冬季节(2019年1–4月)海冰覆盖面积,发现其与1998–2019年多年平均结果无显著差异;先前季节的海冰冰况不是造成极端低值事件的主要原因。综合海冰漂移场、海冰厚度、10 m风场以及海表面净热通量数据发现,2019年5月份海冰面积减小2.33×105 km2,是1998年以来5月海冰损失量最大的年份,占融冰季节海冰面积减小量的62%。与1998年、2008年、2012年以及2016年波弗特海夏季发生海冰覆盖面积极端低值现象的机制不同,不断减小的海冰厚度以及2019年5月异常强的风场,促使海冰快速向外输出,波弗特海南部5月16日就形成开阔水域;伴随着异常高的海表面净热通量使得海冰更多地融化,造成了2019年夏季海冰的异常现象。随着海冰厚度的不断变薄,海冰对风场的响应越来越强,海冰消退时间不断提前,波弗特海夏季海冰的极端低值现象可能更为频繁地出现。  相似文献   

18.
两次大风过程的对比分析   总被引:1,自引:0,他引:1  
王雷 《海洋预报》2006,23(3):36-41
文章对两次冷空气结合低气压大风过程进行了对比分析,揭示了海上低压轴向的突然向西北转变而引起的地面气压梯度的迅速加大是造成浙北沿海大风的重要原因之一。同时,揭示了两次过程由于高低层辐合辐散差异而引起的大风区上空两类不同的高低空垂直下沉速度分布特征,指出动量下传作用在地面造成风速的加大主要决定于对流层低层下沉速度(而非中层),这可能是两次大风过程地面气压梯度接近,而实际风力却差一级的原因。  相似文献   

19.
本文以系统的资料,分析了青岛地区气候资源的基本特征。概述了本区的地理位置、气候特点和气候形成的基本因素。阐述了本区气温、降水、风能、光能、蒸发、海雾、烟幕等气候要素的分布特征。并就该区的气候资源做出了有益的评价,除科学利用热量、水分资源外,特别对本地区光能资源和风能资源提出了开发利用的建议。  相似文献   

20.
利用1951年以来65年的热带太平洋海表面温度数据和中国气温以及降水的站点观测资料,通过标准化处理和合成分析的方法,分析了山东气温和降水的季节气候特征及其年际变化,揭示了ENSO冷暖位相发展年及衰减年与山东气温和降水年际气候异常的关系。结果表明:在气温方面,山东地区春夏和秋冬季节温度分别呈经向和纬向分布,降水一年四季都表现为南多北少的特征;冬季鲁西北的气温年际变化在1°C以上,最为显著,而秋季气温的年际变化最不明显。对于降水的年际变化,夏季鲁西北、鲁南东部和胶州湾西部地区的年际变化最大,季节累计降水量异常最大达120mm以上,冬季降水年际变化最弱。ENSO对山东地区不同季节气温和降水异常强度的影响并非严格反对称,且存在显著的空间分布不均匀性;拉尼娜对山东气温年际变化的影响要比厄尔尼诺强、且影响范围广,厄尔尼诺对山东降水年际变化的影响更明显;厄尔尼诺和拉尼娜发展年和衰减年夏季对山东南部沿海地区(以青岛为例)气温正负变化的影响是反对称的,但是对内陆地区(以济南为例)而言,在厄尔尼诺/拉尼娜发展年冬季以及衰减年夏季两者对济南气温的影响是一致的;ENSO发展年夏季和秋季,厄尔尼诺/拉尼娜对南部沿海地区和内陆降水的影响不对称,但是对衰减年夏季降水的影响是反对称的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号