首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper studies the control of constrained systems whose dynamics and constraints switch between a finite set of modes over time according to an exogenous input signal. We define a new type of control invariant sets for switched constrained systems, called switch–robust control invariant (switch‐RCI) sets, that are robust to unknown mode switching and exploit available information on minimum dwell‐time and admissible mode transitions. These switch‐RCI sets are used to derive novel necessary and sufficient conditions for the existence of a control‐law that guarantees constraint satisfaction in the presence of unknown mode switching with known minimum dwell‐time. The switch‐RCI sets are also used to design a recursively feasible model predictive controller (MPC) that enforces closed‐loop constraint satisfaction for switched constrained systems. We show that our controller is nonconservative in the sense that it enforces constraints on the largest possible domain, ie, constraints can be recursively satisfied if and only if our controller is feasible. The MPC and switch‐RCI sets are demonstrated on a vehicle lane‐changing case study.  相似文献   

2.
针对一类输入和状态受限的离散线性不确定系统,提出了一种基于Tube不变集的离线鲁棒模型预测控制方法.首先针对输入和状态约束线性时不变标准系统,设计了改进的基于多面体不变集的离线模型预测控制算法,并证明了稳定性.其次对于存在未知有界干扰的实际不确定系统,引入了Tube不变集策略,通过设计对应标准模型的最优控制序列和状态轨迹,给出了实际不确定系统的离线Tube不变集控制策略,保证系统状态鲁棒渐近稳定,并收敛于终端干扰不变集.仿真结果验证了该控制方法的有效性.  相似文献   

3.
This paper presents an algorithm for the computation of full‐complexity polytopic robust control invariant (RCI) sets, and the corresponding linear state‐feedback control law. The proposed scheme can be applied for linear discrete‐time systems subject to additive disturbances and structured norm‐bounded or polytopic uncertainties. Output, initial condition, and performance constraints are considered. Arbitrary complexity of the invariant polytope is allowed to enable less conservative inner/outer approximations to the RCI sets whereas the RCI set is assumed to be symmetric around the origin. The nonlinearities associated with the computation of such an RCI set structure are overcome through the application of Farkas' theorem and a corollary of the elimination lemma to obtain an initial polytopic RCI set, which is guaranteed to exist under certain conditions. A Newton‐like update, which is recursively feasible, is then proposed to yield desirable large/small volume RCI sets.  相似文献   

4.
This paper studies local control of discrete‐time periodic linear systems subject to input saturation by using the multi‐step periodic invariant set approach. A multi‐step periodic invariant set refers to a set from which all trajectories will enter a periodic invariant set after finite steps, remain there forever, and eventually converge to the origin as time approaches infinity. The problems of (robust) estimation of the domain of attraction, (robust) local stabilization (with bounded uncertainties), and disturbance rejection are considered. Compared with the conventional periodic invariant set approach, which has been used in the literature for local stability analysis and stabilization of discrete‐time periodic linear systems subject to input saturation, this new invariant set approach is capable of significantly reducing the conservatism by introducing additional auxiliary variables in the set invariance conditions. Moreover, the new approach allows to design (robust) stabilizing periodic controller, in the presence of norm bounded uncertainties, whose period is the same as the open‐loop system and is different from the existing periodic enhancement approach by which the period of the controller is multiple times of the period of the open‐loop system. Several numerical examples are worked out to show the effectiveness of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
秦伟伟  马建军  李鹏  郑志强 《控制工程》2011,18(6):855-857,930
针对一类状态和输入受约束的多胞不确定线性时变系统,提出了一种基于多面体不变集的变终端约束集鲁棒模型预测控制算法.首先采用基于状态反馈增益的多面体不变集计算方法,给出了一种新的控制不变集序列构造方法,然后以控制不变集序列的并集作为终端约束集,结合在线优化和增益切换,实施变终端约束集双模鲁棒预测控制.该算法不仅有效地扩大了...  相似文献   

6.
D.Q. Mayne  W.R. Schroeder 《Automatica》1997,33(12):2103-2118
A version of dynamic programming, which computes level sets of the value function rather than the value function set itself, is used to design robust non-linear controllers for linear, discrete-time, dynamical systems subject to hard constraints on controls and states. The controller stabilizes the system and steers all trajectories emanating in a prescribed set to a control invariant set in minimum time. For the robust regulator problem, the control invariant terminal set is a neighborhood, preferably small, of the origin; for the robust tracking problem, the control invariant terminal set is a neighborhood of the invariant set in which the tracking error is zero. Two non-linear controllers which utilize the level sets of the value function, are described. The first requires the controller to solve, on-line, a modest linear program whose dimension is approximately the same as that of the control variable. The second decomposes each level set into a set of simplices; a piecewise linear control law, affine in each simplex, is then constructed.  相似文献   

7.
A new approach for design of robust decentralized controllers for continuous linear time‐invariant systems is proposed using linear matrix inequalities (LMIs). The proposed method is based on closed‐loop diagonal dominance. Sufficient conditions for closed‐loop stability and closed‐loop block‐diagonal dominance are obtained. Satisfying the obtained conditions is formulated as an optimization problem with a system of LMI constraints. By adding an extra LMI constraint to the system of LMI constraints in the optimization problem, the robust control is addressed as well. Accordingly, the decentralized robust control problem for a multivariable system is reduced to an optimization problem for a system of LMI constraints to be feasible. An example is given to show the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Young Il  Basil   《Automatica》2006,42(12):2175-2181
In this paper, a receding-horizon control method for input/state constrained systems with polyhedral uncertainties is proposed. The dual-mode prediction strategy is adopted to deal with the constraints and periodically-invariant sets are used to derive a target invariant set of the dual-mode prediction strategy. The proposed control method is shown to have novel characteristics earlier approaches do not have i.e.: (i) the convex-hull of all the periodically invariant sets are invariant in the sense that there are feasible feedback gains guaranteeing invariance for any elements of the convex-hull and it provides larger target sets than other methods based on ordinary invariant sets. (ii) A particular convex-hull of periodically invariant sets, that is computable off-line, can be used as an invariant target set. In this case the number of on-line variables is only equal to the period of invariance and thus the proposed algorithm is computationally very efficient. These on-line variables provide interpolation between different feedback gains to yield best performance.  相似文献   

9.
This paper considers output feedback control of linear discrete-time systems with convex state and input constraints which are subject to bounded state disturbances and output measurement errors. We show that the non-convex problem of finding a constraint admissible affine output feedback policy over a finite horizon, to be used in conjunction with a fixed linear state observer, can be converted to an equivalent convex problem. When used in the design of a time-varying robust receding horizon control law, we derive conditions under which the resulting closed-loop system is guaranteed to satisfy the system constraints for all time, given an initial state estimate and bound on the state estimation error. When the state estimation error bound matches the minimal robust positively invariant (mRPI) set for the system error dynamics, we show that this control law is time-invariant, but its calculation generally requires solution of an infinite-dimensional optimization problem. Finally, using an invariant outer approximation to the mRPI error set, we develop a time-invariant control law that can be computed by solving a finite-dimensional tractable optimization problem at each time step that guarantees that the closed-loop system satisfies the constraints for all time.  相似文献   

10.
In this paper, we propose a new design method of discrete‐valued model predictive control for continuous‐time linear time‐invariant systems based on sum‐of‐absolute‐values (SOAV) optimization. The finite‐horizon discrete‐valued control design is formulated as an SOAV optimal control, which is an expansion of L1 optimal control. It is known that under the normality assumption, the SOAV optimal control exists and takes values in a fixed finite alphabet set if the initial state lies in a subset of the reachable set. In this paper, we analyze the existence and discreteness property for systems that do not necessarily satisfy the normality assumption. Then, we extend the finite‐horizon SOAV optimal control to infinite‐horizon model predictive control (MPC). We give sufficient conditions for the recursive feasibility and the stability of the MPC‐based feedback system in the presence of bounded noise. Simulation results show the effectiveness of the proposed method.  相似文献   

11.
Constraint‐admissible sets have been widely used in the study of control systems with hard constraints. This paper proposes a generalization of the maximal constraint‐admissible set for constrained linear discrete‐time systems to the case where soft or probabilistic constraints are present. Defined in the most obvious way, the maximal probabilistic constraint‐admissible set is not invariant. An inner approximation of it is proposed which is invariant and has other nice properties. The application of this approximate set in a model predictive control framework with probabilistic constraints is discussed, including the feasibility and stability of the resulting closed‐loop system. The effectiveness of the proposed approach is illustrated via numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A receding horizon predictive control algorithm for systems with model uncertainty and input constraints is developed. The proposed algorithm adopts the receding horizon dual-mode (i.e., free control moves and invariant set) paradigm. The approach is novel in that it provides a convenient way of combining predictions of control moves, which are optimal in the sense of worst case performance, with large target invariant sets. Thus, the proposed algorithm has a large stabilizable set of states corresponding to a cautious state feedback law while enjoying the good performance of a tightly tuned but robust control law. Unlike earlier approaches which are based on QP or semidefinite programming, here computational complexity is reduced through the use of LP  相似文献   

13.
为了抑制外部持续有界扰动和模型不确定性对系统稳定性控制的影响,通过不变集理论,采用嵌套不变椭圆集鲁棒控制算法实现系统的快速稳定控制。控制算法分为离线算法和在线算法两部分。离线时根据公式得到一维状态变量序列,通过线性矩阵不等式方法优化得到嵌套不变椭圆集。在线时,根据系统状态变量在嵌套不变椭圆集的位置,构建新的不变椭圆集并计算得到系统的控制律。给出新的不变椭圆集满足系统控制要求的理论证明。通过与不变单椭圆集控制算法进行仿真比较,结果验证了上述算法的有效性,为持续有界扰动下模型不确定性系统的稳定控制,提供一种有效的控制方法。  相似文献   

14.
This paper presents a robust model predictive control algorithm with a time‐varying terminal constraint set for systems with model uncertainty and input constraints. In this algorithm, the nonlinear system is approximated by a linear model where the approximation error is considered as an unstructured uncertainty that can be represented by a Lipschitz nonlinear function. A continuum of terminal constraint sets is constructed off‐line, and robust stability is achieved on‐line by using a variable control horizon. This approach significantly reduces the computational complexity. The proposed robust model predictive controller with a terminal constraint set is used in tracking set‐points for nonlinear systems. The effectiveness of the proposed method is illustrated with a numerical example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper the concept of maximal admissible set (MAS) for linear systems with polytopic uncertainty is extended to non‐linear systems composed of a linear constant part followed by a non‐linear term. We characterize the maximal admissible set for the non‐linear system with unstructured uncertainty in the form of polyhedral invariant sets. A computationally efficient state‐feedback RMPC law is derived off‐line for Lipschitz non‐linear systems. The state‐feedback control law is calculated by solving a convex optimization problem within the framework of linear matrix inequalities (LMIs), which leads to guaranteeing closed‐loop robust stability. Most of the computational burdens are moved off‐line. A linear optimization problem is performed to characterize the maximal admissible set, and it is shown that an ellipsoidal invariant set is only an approximation of the true stabilizable region. This method not only remarkably extends the size of the admissible set of initial conditions but also greatly reduces the on‐line computational time. The usefulness and effectiveness of the method proposed here is verified via two simulation examples.  相似文献   

16.
The present paper addresses an observer‐based output feedback robust model predictive control for the linear parameter varying system with bounded disturbance and noise subject to input and state constraints. The main contribution is that the on‐line convex optimization problem not only simultaneously optimizes the observer and controller gains to stabilize the augmented closed‐loop system but also incorporates the refreshment of bounds of the estimation error set. The optimization problem steers the nominal augmented closed‐loop system to converge to the origin, and the real augmented closed‐loop system bounded within robust positive invariant set converges to a neighborhood of the origin such that recursive feasibility of the optimization and robust stability of the controlled system are ensured. Two numerical examples are given to illustrate the effectiveness of the method.  相似文献   

17.
This paper presents two control strategies under the time optimal control and model predictive control frameworks for constrained piecewise linear systems with bounded disturbances (PWLBD systems). Each of the proposed approaches uses an inner convex polytopal approximation of the non‐convex domains of attraction and results in simplified control laws that can be determined off‐line via multi‐parametric programming. These control strategies rely on invariant sets of PWLBD systems. Thereby, approaches for the computation of the disturbance invariant outer bounds of the minimal disturbance invariant set, F, and convex polytopal disturbance invariant sets are presented. The effectiveness of the approaches is assessed through numerical examples. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper addresses the issues of conservativeness and computational complexity of robust control. A new probabilistic robust control method is proposed to design a high performance controller. The key of the new method is that the uncertainty set is divided into two parts: r‐subset and the complementary set of r‐subset. The contributions of the new method are as follows: (i) a deterministic robust controller is designed for r‐subset, so it has less conservative than those designed by using deterministic robust control method for the full set; and (ii) the probabilistic robustness of the designed controller is evaluated just for the complementary set of r‐subset but not for the full set, so the computational complexity of the new method is reduced. Given expected probability robustness, a pertinent probabilistic robust controller can be designed by adjusting the norm boundary of r‐subset. The effectiveness of the proposed method is verified by the simulation example.  相似文献   

19.
离散非线性时变凸多面体系统族的鲁棒正不变集   总被引:3,自引:0,他引:3  
动态系统的状态约束和控制约束等问题可归结为状态空间中某些集合的正不变性.利用 混合单调分解方法研究离散非线性、时变凸多面体系统族的线性状态约束集合的鲁棒正不变性. 对由矩阵凸多面体和加性区间扰动描述的线性时变离散系统族,得到了鲁棒正不变集的充分必要 条件;对非线性系统族则得到有关充分条件.这些条件均由系统族的顶点表述,易于检验,同时给 出示例.  相似文献   

20.
This paper describes a new robust model predictive control (MPC) scheme to control the discrete‐time linear parameter‐varying input‐output models subject to input and output constraints. Closed‐loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal set, which are solved offline, for the underlying online MPC optimization problem. The main attractive feature of the proposed scheme in comparison with previously published results is that all offline computations are now based on the convex optimization problem, which significantly reduces conservatism and computational complexity. Moreover, the proposed scheme can handle a wider class of linear parameter‐varying input‐output models than those considered by previous schemes without increasing the complexity. For an illustration, the predictive control of a continuously stirred tank reactor is provided with the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号