首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
基于改进EEMD-SE-ARMA的超短期风功率组合预测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对风力发电功率时间序列具有非线性和非平稳性的特性,提出了一种改进的集成经验模态分解(Modified Ensemble Empirical Mode Decomposition,MEEMD)-样本熵(Sample Entropy,SE)-ARMA的风电功率超短期组合预测模型。将EEMD分解中添加的白噪声信号改为添加绝对值相等的正负两组白噪声信号,并将MEEMD分解过程中的EMD步骤使用端点延拓和分段三次埃尔米特插值进行改进,形成一种改进的EEMD分解算法(即MEEMD)。利用MEEMD-SE将风力发电功率时间序列分解为一系列复杂度差异明显的风电子序列;针对每一个不同的子序列建立适当的ARMA预测模型;将各预测分量进行叠加重构,得到最终的风电功率预测值。通过算例分析及与其他几种预测模型预测结果的对比,证明MEEMD-SE-ARMA组合预测模型可以有效地提高风力发电功率超短期预测的精度。  相似文献   

2.
《电网技术》2021,45(3):855-862,中插2-中插3
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementaryensembleempiricalmode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(leastsquaressupportvectorregression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。  相似文献   

3.
童宇轩  金超  李灿 《江苏电器》2023,(11):26-32
针对风电功率存在间歇性、非线性和波动性而难以准确预测的问题,提出一种遵循“序列分解-网络预测-序列重构”的风电功率预测模型。针对风电场集群中的不同风电机组出力特性曲线,使用迭代自组织数据分析聚类算法(ISODATA)聚类得到典型出力曲线;利用自适应噪声完全集成经验模态分解(CEEMDAN)算法对聚类得到的原始风电序列数据进行模态分解,减少数据波动所带来的预测误差;建立各模态分量的双向长短期记忆网络(BiLSTM)预测模型,并使用改进麻雀搜索算法(ISSA)优化网络参数,再将各模态分量的预测结果叠加得到风电功率的最终预测结果。算例结果表明,所提预测模型的预测精度相比其他对比模型更高,且有着更好的泛化能力。  相似文献   

4.
针对风电场日前风电出力预测问题,应用一种基于经验模态分解法优化支持向量机的算法的短期风电功率组合预测方法。首先采用经验模态分解法将历史风电功率数据分解为一系列相对平稳的分量序列,以减少不同特征信息间的相互影响,然后采用优化的支持向量机法对所分解的各分量序列分别建立预测模型,针对各分量自身特点选用不同的核函数和参数以取得单个分量的最佳预测精度,最后把各个分量的预测结果叠加,形成风电功率的最终预测值。算例表明,与其他单一预测方法相比,本文使用的组合算法预测精度更高。  相似文献   

5.
为提高风电功率预测精度,提出了一种基于贝叶斯优化的变分模态分解(variationalmodedecomposition,VMD)和门控循环单元(gatedrecurrentunit, GRU)相结合的风电功率预测方法。首先使用VMD算法对风电功率序列进行分解,并根据排列熵(permutation entropy, PE)的大小来确定序列分解的最佳模态数。然后将分解后得到的子序列分量与关键气象变量数据结合构成模型输入特征。使用GRU网络对各个子序列分量分别进行预测,并将各个子序列分量的预测结果进行重构得到风电功率预测结果。最后采用贝叶斯优化方法对各个子序列预测模型的网络初始超参数进行优化。采用某风电场的风电数据对所提模型进行验证,并与其他6种模型进行性能对比。结果表明,基于贝叶斯优化的VMD-GRU预测模型明显优于其他模型,具有较好的泛化能力,能够有效提高风电功率预测精度。  相似文献   

6.
基于EEMD和ARCH的风电功率超短期预测   总被引:1,自引:0,他引:1       下载免费PDF全文
针对风电功率具有非平稳性和波动集群现象,提出一种基于集合经验模态分解和自回归条件异方差组合模型预测方法。该方法通过EEMD分解法将风电出力分解为一系列平稳的时序分量,再由游程判定法,将时序分量重组为波动分量、短期趋势分量和长期趋势分量,以集中分量特征信息降低预测难度;针对各分量的波动特征,建立相应的ARCH预测模型。算例结果表明,该种组合预测方法简单,具有较高的预测精度,能更好的反应风电功率的波动特性。  相似文献   

7.
基于EMD分解和集对分析的风电功率实时预测   总被引:1,自引:0,他引:1  
风电功率时间序列的随机性和波动性使得风电功率多步预测时难以达到理想的预测准确度,因此,提出一种基于经验模态分解(EMD)和集对分析的风电功率实时预测模型。该模型首先将风电功率时间序列经EMD分解,处理成有限个相对平稳的分量;然后利用极值点划分法,按波动程度相近的原则将分量重构为高频、中频和低频3个分量;最后对3个分量各自的特点针对性地建立预测模型,并将3个分量的预测结果叠加作为原始风电功率的预测值,用滚动的方式实现多步预测。采用3个不同装机容量的风电场的实测风电功率数据进行仿真,结果表明该方法提高了多步预测的准确度,显示出了良好的预测性能。  相似文献   

8.
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。  相似文献   

9.
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。  相似文献   

10.
为了提高风电场输出功率的预测精度,提出一种基于经验模态分解(empiricalmode decomposition,EMD)与小波包分解(wavelet packet decomposition,WPD)的组合分解方法,与纵横交叉算法(crisscross optimization,CSO)优化后的Elman神经网络组成组合风电功率预测模型。该模型首先利用EMD将风电功率序列进行分解,然后利用样本熵计算EMD分解后序列的复杂度。对于高复杂度序列,利用WPD对序列进行二次分解,建立EMD-WPD-CSO-Elman预测模型;对于复杂度适中的序列,采用CSO优化Elman神经网络参数,建立EMD-CSO-Elman预测模型;对于低复杂度序列,直接建立EMD-Elman预测模型。最后叠加各个序列的预测结果,得到最终的风电预测功率。以某风电场实际采集数据为例,预测提前24 h的风电功率,并与EMD-WPD-CSO-BP、EMD-Elman及WPD-Elman预测模型比较,结果表明,本文提出的风电功率预测组合模型具有更好的精度。  相似文献   

11.
赵辉  李斌  李彪  岳有军 《中国电力》2012,45(4):78-81
对风电场风速的准确预测,可以有效减轻并网后风电对电网的影响,提高风电市场竞争力。提出将时间序列自回归滑动平均模型(Auto Regressive Moving Average, ARMA) 与最小二乘支持向量机模型(Least Square Support Vector Machine,LS-SVM)相结合的混合模型短期风速预测方法。采用小波变换(Wavelet Transform,WT)方法将历史风速序列分解成具有不同频率特征的序列。根据分解后各分量的特点,对于低频趋势分量选取LS-SVM方法进行预测,而高频波动分量则选取ARMA模型进行预测,采用小波重构得到最终预测结果。仿真实例表明,不同的预测方法整体的预测精度不同,而混合模型预测的均方根误差最低为11.5%,与单一预测方法相比,混合模型提高了预测精度。  相似文献   

12.
提出一种基于集合经验模态分解(Ensemble empirical mode decomposition)和改进极限学习机(Improved Extreme Learning Machine,IELM)的新型短期风速组合预测模型。采用集合经验模态分解将风速序列分解成不同频段的分量,以降低序列的非平稳性。使用改进极限学习机对各分量分别建模预测,为避免极限学习机输入维数选取的随意性和分量信息丢失等问题,先对各分量重构相空间,最后将各分量预测结果叠加得到最终预测结果。实例研究表明,所提的组合预测模型具有较高的预测精度。  相似文献   

13.
电力系统负荷是具有典型周期性和随机性特点的非线性、非平稳时间序列的负荷系统。为了降低负荷序列的非线性,提高预测精度,提出了集总经验模态分解法(EEMD)和基于改进人工神经网络(GABP)的短期负荷预测法。运用EEMD将负荷序列分解成若干不同频率的平稳分量,突出原负荷数据局部特征,解决了经验模态分解法(EMD)中分类模糊问题,同时利用GABP网络进行预测,解决了BP容易陷入局部最优解的问题,选择合适的参数对各分量构造不同的EEMD-GABP预测模型,引入气象因子对各分量分别预测,重构后得到最终预测值。算例表明,基于EMD-GABP预测模型的负荷量预测精度高于差分整合移动自回归移动(ARIMA)模型、支持向量机(SVM)模型等传统模型,稳定性更强。  相似文献   

14.
随着风力发电技术的发展,风电已成为最主要的新能源发电方式.但因风的随机性造成的风场输出功率的随机波动,电网将面对备用容量增多、调度难度增大以及风电场弃风等问题.解决上述问题的有效途径之一就是对风电场输出功率进行准确预测.针对风电场功率时间序列的非线性和非平稳性,分别将EMD和EEMD方法与时间序列的方法相结合应用于风电场功率预测中,提出基于EMD - ARMA和EEMD-ARMA的风功率预测方法.采用某风电场的实际功率数据进行分析预测,预测结果验证了所提方法的正确性和有效性.  相似文献   

15.
为了快速准确地预测含高比例电采暖设备的配电变压器的短期负荷,提出了基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)及BP神经网络算法组合的电采暖配电变压器短期负荷预测方法,该方法考虑了采暖日天气类型、采暖日温度等环境条件对居民采暖行为的影响。首先运用EEMD方法将日负荷序列分解成4组频率由低至高的分量序列及1组剩余分量序列,再将各分量序列及温度数据、气象数据输入BP神经网络中进行预测,最后各个预测分量相加得到最终的预测结果。将该方法应用于北京地区冬季“煤改电”工程中,对某个含高比例电采暖负荷的配电变压器进行短期预测,算例表明,EEMD-BP组合预测方法能够有效减小负荷预测误差。  相似文献   

16.
提出了一种基于多分辨率分析下的短期风速预测方法.利用小波分解将原始风速序列分解成低频信号分量和高频信号分量,将低频信号分量作为时间序列模型的输入,将高频信号分量作为最小二乘支持向量机的输入,输出未来时间段的各分量预测值.最后将各分量的预测值重构为风速序列的预测值.以内蒙古风电场为例进行仿真,结果表明文中方法显著提高了超前风速预测的精度.  相似文献   

17.
针对目前常用负荷分析方法多依赖主观经验,而经典经验模式分解有时出现混频现象的问题,提出了一种基于因散经验模式分解的电力负荷混合预测方法。首先,采用经验模式分解的改进算法——因散经验模式分解将负荷序列分解,这样可以自适应地将目标序列分解为若干个独立的内在模式,因此能够克服依赖主观经验的缺点。然后,将这些内在模式基于fine-to-coarse重构为高频、低频和趋势3个分量。在对各分量特性进行分析的基础上,分别采用支持向量机、自回归移动平均和线性回归模型对其进行预测。最后,将3个分量的预测结果叠加作为最终的预测值。利用上述方法对某电网进行24点负荷预测,结果表明该方法可以有效地提高负荷预测精度。  相似文献   

18.
风电场风速及风电功率预测技术是加强风电并网管理的关键措施之一。为了提高短期风速预测的精度,减小风电并网对电力系统的电能质量及其安全稳定运行带来的影响,提出了基于混沌时间序列的支持向量机短期风速预测模型。该模型针对风速混沌时间序列建模,并采用基于贝叶斯框架的最小二乘支持向量机对风速进行短期预测。仿真实验结果表明,该预测模型有效地提高了短期风速预测的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号