首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of CaO particles in a cement clinker is described by a simple model for diffusion-controlled dissolution of spheres. The experimental results agree well with those predicted from data obtained in independent diffusion experiments. Under certain conditions it is possible to determine the maximum size of CaO particles which can react with C2S to give C2S within a given reaction time; further, for a given size distribution of CaO particles, the content of free CaO in the clinker after a given burning time can be estimated.  相似文献   

2.
Several additives were selected to increase the setting time of calcium phosphate cements made of β-tricalcium phosphate (β-TCP; β-Ca3(PO4)2)-phosphoric acid-water mixtures. The effects of the additives, i.e., sulfate, pyrophosphate, and citrate ions, are presented in this study. The results show that they all increased the setting time of the cement. Their effectiveness at increasing the setting time is in the order pyrophosphate > citrate > sulfate. The effect of sulfate ions on the setting time is increasingly large below a concentration of 0.1 M . Above that concentration, calcium sulfate dihydrate (CSD; CaSO4-2H2O) crystals nucleate and act as nuclei for dicalcium phosphate dihydrate (DCPD; CaHPO4-2H2O) crystals, which are the normal product of the setting reaction. This decreases the setting time and decreases the DCPD crystal size, resulting in an increase of the tensile strength of the cement.  相似文献   

3.
The transformation β→α in Mg-substituted Ca3(PO4)2 was studied. The results obtained showed that, contrary to common belief, there is, in the system Mg3(PO4)2–Ca3(PO4)2, a binary phase field where β+α-Ca3(PO4)2 solid solutions coexist. This binary field lies between the single-phase fields of β- and α-Ca3(PO4)2 solid solution in the Ca3(PO4)2-rich zone of the mentioned system. In the light of the results and the Palatnik–Landau's Contact Rule of Phase Regions, a corrected phase equilibrium diagram has been proposed. The practical implications of these findings with regard to the synthesis of pure α- and β- Mg-substituted Ca3(PO4)2 powders and to the sintering of related bioceramics with improved mechanical properties are pointed out.  相似文献   

4.
A paired interstitialcy model is used as a basis for qualitative comparisons of conductivity and dielectric phenomena in β-alumina crystals and in glass. Thus, the increase in the conductivity of sodium silicate glasses with increasing Na2O activity can be explained if the concentration of (Na2*)2+ interstitial pairs increases with increased polarizability of O2- ions, expressed in terms of the optical basicity parameter, Δ. Similarly, the occurrence of the pronounced minima in conductivity isotherms (the mixed-alkali effect in glass) is attributed to disappearance of mobile interstitial pairs, e.g. (Li2*)2+ or (K2*)2+, and the stabilization (by polarization interactions) of apparently immobile mixed-alkali pairs, (LiK*)2+. The phenomenon of coionic conduction in certain β-alumina crystals is an interesting departure from this general pattern. The orientation dependence of the electrical modulus spectrum of monocrys-talline β-alumina highlights the presence of a bimodal distribution of relaxation times, in which the low-frequency component ( v 0=1011 Hz) may arise from the rearrangement of interstitial pairs and the high-frequency component ( v 0=2×1012 Hz) may arise from less hindered ionic motions. It is suggested that the motions of interstitial pairs and surrounding cations are mutually catalytic and that some form of combined motion is responsible for both the electrical and mechanical relaxations in β-alumina and glass.  相似文献   

5.
We present a scalable synthesis of a versatile MTX reagent with an azide ligation handle that allows rapid γ‐selective conjugation to yield MTX fusion compounds (MFCs) appropriate for MASPIT, a three‐hybrid system that enables the identification of mammalian cytosolic proteins that interact with a small molecule of interest. We selected three structurally diverse pharmacologically active compounds (tamoxifen, reversine, and FK506) as model baits. After acetylene functionalization of these baits, MFCs were synthesized via a CuAAC reaction, demonstrating the general applicability of the MTX reagent. In analytical mode, MASPIT was able to give concentration‐dependent reporter signals for the established target proteins. Furthermore, we demonstrate that the sensitivity obtained with the new MTX reagent was significantly stronger than that of a previously used non‐regiomeric conjugate mixture. Finally, the FK506 MFC was explored in a cellular array screen for targets of FK506. Out of a pilot collection of nearly 2000 full‐length human ORF preys, FKBP12, the established target of FK506, emerged as the prey protein that gave the highest increase in luciferase activity. This indicates that our newly developed synthetic strategy for the straightforward generation of MFCs is a promising asset to uncover new intracellular targets using MASPIT cellular array screening.  相似文献   

6.
A new "incipient-wetness" method is proposed for the synthesis of chemically stabilized β-cristobalite (CSC) that avoids the need to handle liquid phases as required by the sol-gel routes proposed in the literature. Stoichiometric compounds with the composition Si1–xAl*xCa1/2O2 have been investigated. ×= 0.07 represents the optimal composition for obtaining an extremely well-crystallized material consisting of a single β-cristobalite phase. XRD, FTIR, DSC, and differential dilatometry have been used for the physicochemical characterization of the samples.  相似文献   

7.
Directional solvent extraction (DSE) has been gaining interest as a water treatment technology in recent years. DSE utilizes the process of micellization for the purposes of species separation between water and complex chemical systems. In this article, we develop a conformal geometric algebra-based formulation that models surfactants, their solubilities, and critical micelle concentration (CMC), with relation to temperature and pressure. Molecules are represented as spatially distributed networks embedded in R 4,1 space, and the mathematical characterizations of these molecules are shown to be effective in modelling CMC as a function of temperature and pressure. One of the contributions of this work is the utilization of this formulation to develop a governing expression, in the form of a three-dimensional relationship, between CMC, pressure, and temperature for a general surfactant. In prior works, the CMC–temperature plane and CMC–pressure plane expressions have been extensively documented for sodium alkyl sulfates. In this work, we extend the formulation to model the CMC of decanoic acid, sodium octyl sulfate, sodium decyl sulfate, sodium dodecyl sulfate, and sodium tetradecyl sulfate. Using this theoretical model, a relationship between CMC and the directional solubility of water in a surfactant is determined. Directional solubility is related to temperature and pressure, and on this basis, we devise a directional solubility–pressure–temperature expression for an arbitrary surfactant to improve the state of the art for DSE. From this expression, we propose a novel isothermal DSE process for water treatment.  相似文献   

8.
9.
The d-band model of Hammer and Nørskov (Nature 376:238, 1995 [3]) relating adsorption energies to the d-band position, and the adsorption energies to barriers in catalytic reactions, has been extremely successful in predicting reactivities and catalysts. In the present contribution we review recent combined experimental and theoretical work on chemical bond-formation at surfaces. We focus on the adsorbate and how the adsorbate electronic structure can be rehybridized through mixing with unoccupied states to generate the radical state, real or virtual, that can then form electron pairs with the metal d-states, as described by the d-band model. We discuss five important bonding situations: (i) atomic radical, (ii) diatomics with unsaturated π-systems (Blyholder model), (iii) unsaturated hydrocarbons (Dewar–Chatt–Duncanson model), (iv) lone–pair interactions, and (v) saturated hydrocarbons (physisorption). Where the d-band model predicts trends along the series of transition metals, the present work provides intuitive tools for predicting trends among different adsorbates.  相似文献   

10.
11.
Two NMR‐based approaches for high‐throughput screening of enantioselective catalysts and biocatalysts are described. One version makes use of pseudo‐enantiomers or pseudo‐meso‐compounds based on 13C‐labeling. A throughput of at least 1400 ee determinations per day is possible by using an appropriate flow‐through cell and an autosampler. The other approach is based on traditional diastereomer formation using a chiral reagent or complexing agent. The ee values are accurate to within ±2% and ±5% of the true values.  相似文献   

12.
In the presence of the inexpensive and non‐toxic stoichiometric reductant polymethylhydrosiloxane (PMHS), the chiral copper(II)‐dipyridylphosphine catalyst displayed high efficiency in the stereoselective hydrosilylation of a wide scope of aryl alkyl and heteroaromatic ketones under an air atmosphere and mild conditions in good to excellent ees (up to 97%). With certain amounts of sodium tert‐butoxide and tert‐butyl alcohol as additives, the reaction on a 21‐g substrate scale can be conveniently completed within a few hours even at a substrate‐to‐ligand (S/L) ratio of 50,000.  相似文献   

13.
14.
Self-assembled peptide nanofibers (NFs) obtained from β-sheet peptides conjugated with drugs, including antigenic peptides, have recently attracted significant attention. However, extensive studies on the interactions of β-sheet peptide NFs with model cell membranes have not been reported. In this study, we investigated the interactions between three types of NFs, composed of PEG-peptide conjugates with different ethylene glycol (EG) lengths (6-, 12- and 24-mer), and dipalmitoylphosphatidylcholine (DPPC) Langmuir membranes. When increasing the EG chain length, those interactions significantly decreased considering measurements in the presence of the NFs of: (i) changes in surface pressure of the DPPC Langmuir monolayers and (ii) surface pressure–area (π–A) compression isotherms of DPPC. Because the observed trend was similar to the EG length dependency with regard to cellular association and cytotoxicity of the NFs that was reported previously, the interaction of NFs with phospholipid membranes represented a crucial factor to determine the cellular association and toxicity of the NFs. In contrast to NFs, no changes were observed with varying EG chain length on the interaction of the building block peptide with the DPPC membrane. The results obtained herein can provide a design guideline on the formulation of β-sheet peptide NFs, which may broaden its potential.  相似文献   

15.
A rational catalyst development based on mechanistic and spectroscopic investigations led to the discovery of a new protocol for catalytic hydroamidation reactions that draws on easily available ruthenium trichloride trihydrate (RuCl3⋅3 H2O) as the catalyst precursor instead of the previously employed, expensive bis(2‐methylallyl)(1,5‐cyclooctadiene)ruthenium(II). This practical and easy‐to‐use protocol dramatically improves the synthetic applicability of Ru‐catalyzed hydroamidations. The catalyst, generated in situ from ruthenium(III) chloride hydrate, tri‐n‐butylphosphine, 4‐(dimethylamino)pyridine and potassium carbonate, effectively promotes the addition of secondary amides, lactams and carbamates to terminal alkynes under formation of (E)‐anti‐Markovnikov enamides. The scope of the new protocol is demonstrated by the synthesis of 24 functionalized enamide derivatives, among them valuable intermediates for organic synthesis.  相似文献   

16.
Animals rely on multimodal signals to obtain information from conspecifics through alternative sensory systems, and the evolutionary loss of a signal in one modality may lead to compensation through increased use of signals in an alternative modality. We investigated associations between chemical signaling and evolutionary loss of abdominal color patches in males of four species (two plain-bellied and two colorful-bellied) of Sceloporus lizards. We conducted field trials to compare behavioral responses of male lizards to swabs with femoral gland (FG) secretions from conspecific males and control swabs (clean paper). We also analyzed the volatile organic compound (VOC) composition of male FG secretions by stir bar extraction and gas chromatography-mass spectrometry (GC-MS) to test the hypothesis that loss of the visual signal is associated with elaboration of the chemical signal. Males of plain-bellied, but not colorful-bellied species exhibited different rates of visual displays when exposed to swabs of conspecific FG secretions relative to control swabs. The VOC composition of male Sceloporus FG secretions was similar across all four species, and no clear association between relative abundances of VOCs and evolutionary loss of abdominal color patches was observed. The emerging pattern is that behavioral responses to conspecific chemical signals are species- and context-specific in male Sceloporus, and compensatory changes in receivers, but not signalers may be involved in mediating increased responsiveness to chemical signals in males of plain-bellied species.  相似文献   

17.
Microneedles are small needle‐like structures that are almost invisible to the naked eye. They have an immense potential to serve as a valuable tool in many medical applications, such as painless vaccination. Microneedles work by breaking through the stratum corneum, the outermost barrier layer of the skin, and providing a direct path for drug delivery into the skin. A lot of research has been presented over the past two decades on the applications of microneedles, yet the fundamental mechanism of how they interact, pressure, and penetrate the skin in its native state is worth examining further. As such, a major difficulty with understanding the mechanism of microneedle–skin interaction is the lack of an artificial mechanical human skin model to use as a standardized substrate. In this research news, the development of an artificial mechanical skin model based on a thorough mechanical study of fresh human and porcine skin samples is presented. The artificial mechanical skin model can be used to study the mechanical interactions between microneedles and skin, but not diffusion of molecules across skin. This model can assist in improving the performance of microneedles by enhancing the reproducibility of microneedle depth insertions for optimal drug delivery and biosensing.

  相似文献   


18.
As hypoxic tumors show resistance to several clinical treatments, photosynthetic microorganisms have been recently suggested as a promising safe alternative for oxygenating the tumor microenvironment. The relationship between organisms and the effect microalgae have on tumors is still largely unknown, evidencing the need for a simple yet representative model for studying photosynthetic tumor oxygenation in a reproducible manner. Here, we present a 3D photosynthetic tumor model composed of human melanoma cells and the microalgae Chlamydomonas reinhardtii, both seeded into a collagen scaffold, which allows for the simultaneous study of both cell types. This work focuses on the biocompatibility and cellular interactions of the two cell types, as well as the study of photosynthetic oxygenation of the tumor cells. It is shown that both cell types are biocompatible with one another at cell culture conditions and that a 10:1 ratio of microalgae to cells meets the metabolic requirement of the tumor cells, producing over twice the required amount of oxygen. This 3D tumor model provides an easy-to-use in vitro resource for analyzing the effects of photosynthetically produced oxygen on a tumor microenvironment, thus opening various potential research avenues.  相似文献   

19.
We disclose that [1,3‐bis(diphenylphosphino)methane]nickel(II) chloride [NiCl2(dppp)] is a highly active, universally applicable, cheap, and stable catalyst for Suzuki–Miyaura cross‐coupling reactions of aryl halides with a catalyst loading of lower than 1 mol%, and more notably, in the absence of extra supporting ligands. Under the optimized reaction conditions, a broad range of aryl bromides as well as the notoriously unreactive aryl chlorides, including activated, non‐activated, deactivated, and heteroaromatic and sterically hindered substrates can be coupled smoothly with various boronic acids (47 examples, 48–98% yields). In addition, the transformation is tolerant of various functional groups such as ether, ester, ketone, aldehyde, cyano, and unprotected amino and hydroxy groups. Finally, the potential utilization of the methodology was further demonstrated by the gram‐scale synthesis of several core structures of commercialized antihypertensive drugs and fungicides. Thus, the combination of high activity, broad applicability, cheapness, and high stability of NiCl2(dppp) presented in this work constitutes one of the few prominent catalysts which allow for practical and reliable construction of biaryls and heterobiaryls with structural diversity from readily available aryl halides and boronic acids.  相似文献   

20.
A thermo‐chemo‐mechanical model was proposed, which couples the oxidation rate of ZrB2 between 1000°C and 1800°C with the induced mechanical stress in the oxide scale. The model includes the mechanism for the coupling effect. Due to the special porous microstructure of the oxide, the diffusivities of the oxidation reactants and products through the columnar pores dominate the oxidation kinetics. The pores in the oxide shrink under the compressive stress generated during the oxidation due to the constraint from the substrate to the lateral growth of the oxide. And the shrinkage reduces the Knudsen diffusivities of both the molecular oxygen coming inward and the liquid boria evaporating outward. Consequently, the oxidation rate is reduced, which also affects the stress state. Mechanical approaches, such as Mori–Tanaka homogenization method and laminate theory were adopted in the model to quantitatively describe the coupled effect. The evolutions of oxide thickness, pore diameter, and stresses in both the oxide and the substrate were predicted with the model, which showed that the oxidation rate can be significantly altered by the stress‐diffusion coupling during isothermal oxidation, especially at higher temperatures in the range 1000°C–1800°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号