首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The effect of thioredoxin peroxidases on the protection of Ca(2+)-induced inner mitochondrial membrane permeabilization was studied in the yeast Saccharomyces cerevisiae using null mutants for these genes. Since deletion of a gene can promote several other effects besides the absence of the respective protein, characterizations of the redox state of the mutant strains were performed. Whole cellular extracts from all the mutants presented lower capacity to decompose H(2)O(2) and lower GSH/GSSG ratios, as expected for strains deficient for peroxide-removing enzymes. Interestingly, when glutathione contents in mitochondrial pools were analyzed, all mutants presented lower GSH/GSSG ratios than wild-type cells, with the exception of DeltacTPxI strain (cells in which cytosolic thioredoxin peroxidase I gene was disrupted) that presented higher GSH/GSSG ratio. Low GSH/GSSG ratios in mitochondria increased the susceptibility of yeast to damage induced by Ca(2+) as determined by membrane potential and oxygen consumption experiments. However, H(2)O(2) removal activity appears also to be important for mitochondria protection against permeabilization because exogenously added catalase strongly inhibited loss of mitochondrial potential. Moreover, exogenously added recombinant peroxiredoxins prevented inner mitochondrial membrane permeabilization. GSH/GSSG ratios decreased after Ca(2+) addition, suggesting that reactive oxygen species (ROS) probably mediate this process. Taken together our results indicate that both mitochondrial glutathione pools and peroxide-removing enzymes are key components for the protection of yeast mitochondria against Ca(2+)-induced damage.  相似文献   

2.
Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity   总被引:20,自引:0,他引:20  
Superoxide dismutase is considered important in protection of aerobes against oxidant damage, and increased tolerance to oxidant stress is associated with induction of this enzyme. However, the importance of superoxide dismutase in this tolerance is not clear because conditions which promote the synthesis of superoxide dismutase likewise affect other antioxidant enzymes and substances. To clarify the role of superoxide dismutase per se in organismal defense against oxidant-generating drugs, we employed Escherichia coli transformed with multiple copies of the gene for bacterial iron superoxide dismutase. These bacteria have greater than ten times the superoxide dismutase activity of wild-type E. coli but, importantly, are normal in other oxidant defense parameters including catalase, peroxidases, glutathione, and glutathione reductase. High superoxide dismutase and control bacteria were exposed to the O2- -generating drug paraquat and to elevated pO2. We find; high superoxide dismutase E. coli are more readily killed by paraquat under aerobic, but not anaerobic, conditions. During exposure to paraquat, high superoxide dismutase E. coli accumulate more H2O2. Coincidentally, the reduced glutathione content of high superoxide dismutase E. coli declines more than in control E. coli. E. coli with high superoxide dismutase activity are also more readily killed by hyperoxia. Interestingly, the susceptibility of the parental and high superoxide dismutase E. coli to killing by exogenous H2O2 is not significantly different. Thus, under these experimental conditions, greatly enhanced superoxide dismutase activity accelerates H2O2 formation. The increased H2O2 probably accounts for the exaggerated sensitivity of high superoxide dismutase bacteria to oxidant-generating drugs. These results support the concept that the product of superoxide dismutase, H2O2, is at least as hazardous as the substrate, O2-. We conclude that effective organismal defense against reactive oxygen species may require balanced increments in antioxidant enzymes and cannot necessarily be improved by increases in the activity of single enzymes.  相似文献   

3.
Glutathione is an abundant and ubiquitous low-molecular-weight thiol that may play a role in many cellular processes, including protection against the deleterious effects of reactive oxygen species. We address here the role of glutathione in protection against hydrogen peroxide (H2O2) in Haemophilus influenzae and show that glutathione and catalase provide overlapping defense systems. H. influenzae is naturally glutathione deficient and imports glutathione from the growth medium. Mutant H. influenzae lacking catalase and cultured in glutathione-deficient minimal medium is completely devoid of H2O2 scavenging activity and, accordingly, substantial amounts of H2O2 accumulate in the growth medium. H. influenzae generates H2O2 at rates similar to those reported for Escherichia coli, but the toxicity of this harmful metabolite is averted by glutathione-based H2O2 removal, which appears to be the primary system for protection against H2O2 endogenously generated during aerobic respiration. When H2O2 concentrations exceed low micromolar levels, the hktE gene-encoded catalase becomes the predominant scavenger. The requirement for glutathione in protection against oxidative stress is analogous to that in higher and lower eukaryotes but is unlike the situation in other bacteria in which glutathione is dispensable for aerobic growth during both normal and oxidative stress conditions.  相似文献   

4.
Redox and antioxidant systems of the malaria parasite Plasmodium falciparum   总被引:4,自引:0,他引:4  
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage.  相似文献   

5.
Vitamin C is a well known antioxidant whose precise role in protecting cells from oxidative challenge is uncertain. In vitro results have been confounded by pro-oxidant effects of ascorbic acid and an overlapping role of glutathione. We used HL-60 cells as a model to determine the precise and independent role of vitamin C in cellular protection against cell death induced by oxidative stress. HL-60 cells do not depend on glutathione to transport or reduce dehydroascorbic acid. Depletion of glutathione rendered the HL-60 cells highly sensitive to cell death induced by H2O2, an effect that was not mediated by changes in the activities of glutathione reductase, glutathione peroxidase, catalase, or superoxide dismutase. The increased sensitivity to oxidative stress was largely reversed when glutathione-depleted cells were preloaded with ascorbic acid by exposure to dehydroascorbic acid. Resistance to H2O2 treatment in cells loaded with vitamin C was accompanied by intracellular consumption of ascorbic acid, generation of dehydroascorbic acid, and a decrease in the cellular content of reactive oxygen species. Some of the dehydroascorbic acid generated was exported out of the cells via the glucose transporters. Our data indicate that vitamin C is an important independent antioxidant in protecting cells against death from oxidative stress.  相似文献   

6.
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.  相似文献   

7.
Calmodulin (CaM), the predominant Ca(2+) receptors, is one of the best-characterized Ca(2+) sensors in all eukaryotes. In this study the role of CaM and the possible interrelationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA) induced antioxidant defense were investigated in the seedling of Panax ginseng. Treatment of ABA (100 μM) and H(2)O(2) (10 mM) increased the expression of Panax ginseng calmodulin gene (PgCaM) and significantly enhanced the expression of the antioxidant marker genes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and the activities of chloroplastic and cytosolic antioxidant enzymes. Pretreatments with two CaM antagonists, trifluoperazine (TFP), N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide hydrochloride (W7) and inhibitor or scavenger, diphenyleneiodonium chloride, and dimethylthiourea of reactive oxygen species almost completely suppressed the up-regulation of antioxidant and PgCaM gene. Moreover, H(2)O(2) production and CaM content was almost completely inhibited by pretreatments with two CaM antagonists. In addition, the expressions of PgCaM gene under different biotic stress were analyzed at different time intervals. Thus it may suggests that CaM are involved in ABA-induced increased expression of PgCaM which triggers H(2)O(2) production through activating trans-plasma membrane NADPH oxidase, resulting in up-regulation of defense related antioxidant gene and also plays a pivotal role in defense response against pathogens.  相似文献   

8.
Cellular defense systems against reactive oxygen species (ROS) include thioredoxin reductase (TrxR) and glutathione reductase (GR). They generate sulfhydryl-reducing systems which are coupled to antioxidant enzymes, the thioredoxin and glutathione peroxidases (TPx and GPx). The fruit fly Drosophila lacks a functional GR, suggesting that the thioredoxin system is the major source for recycling glutathione. Whole genome in silico analysis identified two non-selenium containing putative GPx genes. We examined the biochemical characteristics of one of these gene products and found that it lacks GPx activity and functions as a TPx. Transgene-dependent overexpression of the newly identified Glutathione peroxidase homolog with thioredoxin peroxidase activity (Gtpx-1) gene increases resistance to experimentally induced oxidative stress, but does not compensate for the loss of catalase, an enzyme which, like GTPx-1, functions to eliminate hydrogen peroxide. The results suggest that GTPx-1 is part of the Drosophila Trx antioxidant defense system but acts in a genetically distinct pathway or in a different cellular compartment than catalase.  相似文献   

9.
Bovine pituitary extract (BPE) is routinely used as a mitogenic supplement in serum-free growth medium. In addition to its mitogenic activity, BPE contains a variety of growth factors and hormones with reported antioxidant activity. This study examines the antioxidant potential of BPE in nontumorigenic human prostate epithelial cells (RWPE-1). Treatment of RWPE-1 cells with BPE (50 microg/ml) provided significant protection against H(2)O(2)-induced cell death, deoxyribonucleic acid fragmentation, protein oxidation, and membrane damage. Treatment with heat (71 degrees C, 10 min) and proteolytic enzymes reduced the antioxidant activity of BPE, suggesting that proteins present in BPE may be responsible for the antioxidant activity. Residual catalase activity present in BPE was responsible for a portion (30%) of the antioxidant activity. Interestingly, RWPE-1 cells treated with BPE and H(2)O(2) rapidly accumulated intracellular reactive oxygen species (ROS) to a greater extent than cells receiving only H(2)O(2). Pretreatment of RWPE-1 cells with tyrosine kinase inhibitors (genistein, tyrphostin 47, and AG-1296) before the addition of H(2)O(2) diminished BPE protection against H(2)O(2)-induced cell death, whereas treatment with purified mitogens commonly found in BPE, growth hormone and basic fibroblast growth factor, did not protect against oxidative damage. Taken together, these data suggest that BPE contains proteins or protein complexes with remarkable antioxidant activity. These yet unidentified compounds appear to confer protection against H(2)O(2)-induced cell death by tyrosine kinase-dependent pathways that increase intracellular ROS generation. The antioxidant activity of BPE may represent a confounding variable when studying oxidative stress in cells maintained in BPE-supplemented serum-free medium.  相似文献   

10.
Eimeria bovis and Toxoplasma gondii differ in their susceptibility to macrophages activated by lymphokines. Interferon-gamma can activate macrophages to totally inhibit E. bovis sporozoite development, whereas growth of T. gondii tachyzoites in macrophages is not totally affected. The susceptibility of these parasites to oxygen intermediates and their ability to evade the oxidative burst by macrophages were investigated in cell-free systems. Using a logistic model to assess growth inhibition, T. gondii growth was impaired by 50% at 10(-4.25) M (56 microM) H2O2, with 30 min as the optimum time for measuring inhibition. Preliminary results indicate that T. gondii follows mode-one and mode-two killing with relation to time after exposure to H2O2, implying a role for OH. and the induction of a DNA repair mechanism. The same model was used to assess inhibition of E. bovis growth that was more susceptible, being inhibited to 50% by 10(-5) M (10 microM) H2O2. Both parasites were susceptible to the effects of xanthine-xanthine oxidase that releases a full complement of oxygen intermediates (H2O2, OH., (1)O2, and O2-). Adding quenchers or scavengers to the system confirmed that T. gondii was susceptible to products of the interaction of O2- and H2O2 (OH. and (1)O2), and that E. bovis sporozoites were at least partially susceptible to H2O2 and O2-, but extremely susceptible to OH.. These data were supported by studies on scavenging enzymes present in the parasites. Toxoplasma gondii was rich in superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPO), and E. bovis had less catalase and SOD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Aerobic growth of Saccharomyces cerevisiae in the presence of CuSO4 (between 0.1 and 1 mM) caused a generalized induction of major enzyme activities involved in 'housekeeping' routes of oxygen metabolism (cytochrome oxidase, glutathione peroxidases and catalase) which were comparable to or higher than that observed with Cu,Zn-superoxide dismutase. Fumarase and glutathione transferase, tested as controls for oxygen-unrelated activities, were found to decrease under the same conditions. In the absence of oxygen, copper addition to yeast resulted in significant increases of Cu,Zn-superoxide dismutase and glutathione peroxidases and a slight increase of cytochrome oxidase, with catalase remaining undetectable irrespective of whether or not copper was present. Other metal ions tested (Mn2+, Co2+) were unable to produce such effects. It is concluded that copper has a general inducing effect on enzymes related to metabolism of oxygen and oxygen derivatives, which is mediated neither by formation of O2-. and H2O2 nor by interaction with copper-specific apoproteins. These results point to a general role of copper as regulator of the expression of major enzyme activities involved in biological oxygen activation.  相似文献   

12.
There is increasing evidence that Trypanosoma cruzi antioxidant enzymes play a key immune evasion role by protecting the parasite against macrophage-derived reactive oxygen and nitrogen species. Using T. cruzi transformed to overexpress the peroxiredoxins TcCPX (T. cruzi cytosolic tryparedoxin peroxidase) and TcMPX (T. cruzi mitochondrial tryparedoxin peroxidase), we found that both cell lines readily detoxify cytotoxic and diffusible reactive oxygen and nitrogen species generated in vitro or released by activated macrophages. Parasites transformed to overexpress TcAPX (T. cruzi ascorbate-dependent haemoperoxidase) were also more resistant to H2O2 challenge, but unlike TcMPX and TcCPX overexpressing lines, the TcAPX overexpressing parasites were not resistant to peroxynitrite. Whereas isolated tryparedoxin peroxidases react rapidly (k=7.2 x 10(5) M(-1) x s(-1)) and reduce peroxynitrite to nitrite, our results demonstrate that both TcMPX and TcCPX peroxiredoxins also efficiently decompose exogenous- and endogenously-generated peroxynitrite in intact cells. The degree of protection provided by TcCPX against peroxynitrite challenge results in higher parasite proliferation rates, and is demonstrated by inhibition of intracellular redox-sensitive fluorescence probe oxidation, protein 3-nitrotyrosine and protein-DMPO (5,5-dimethylpyrroline-N-oxide) adduct formation. Additionally, peroxynitrite-mediated over-oxidation of the peroxidatic cysteine residue of peroxiredoxins was greatly decreased in TcCPX overexpressing cells. The protective effects generated by TcCPX and TcMPX after oxidant challenge were lost by mutation of the peroxidatic cysteine residue in both enzymes. We also observed that there is less peroxynitrite-dependent 3-nitrotyrosine formation in infective metacyclic trypomastigotes than in non-infective epimastigotes. Together with recent reports of up-regulation of antioxidant enzymes during metacyclogenesis, our results identify components of the antioxidant enzyme network of T. cruzi as virulence factors of emerging importance.  相似文献   

13.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

14.
F Puskas  P Gergely  K Banki  A Perl 《FASEB journal》2000,14(10):1352-1361
Ascorbic acid, or vitamin C, generally functions as an antioxidant by directly reacting with reactive oxygen intermediates and has a vital role in defenses against oxidative stress. However, ascorbic acid also has pro-oxidant properties and may cause apoptosis of lymphoid and myeloid cells. The present study shows that dehydroascorbate, the oxidized form of vitamin C, stimulates the antioxidant defenses of cells, preferentially importing dehydroascorbate over ascorbate. While 200-800 microM vitamin C caused apoptosis of Jurkat and H9 human T lymphocytes, pretreatment with 200-1000 microM dehydroascorbate stimulated activity of pentose phosphate pathway enzymes glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and transaldolase, elevated intracellular glutathione levels, and inhibited H(2)O(2)-induced changes in mitochondrial transmembrane potential and cell death. A 3. 3-fold maximal glutathione elevation was observed after 48 h stimulation with 800 microM dehydroascorbate. In itself, dehydroascorbate did not affect cytosolic or mitochondrial reactive oxygen intermediate levels as monitored by flow cytometry using oxidation-sensitive fluorescent probes. The data reveal a novel mechanism for increasing glutathione levels through stimulation of the pentose phosphate pathway and identify dehydroascorbate as an antioxidant for cells susceptible to the pro-oxidant and proapoptotic properties of vitamin C.  相似文献   

15.
16.
The Arabidopsis gene APX3 that encodes a putative peroxisomal membrane-bound ascorbate peroxidase was expressed in transgenic tobacco plants. APX3-expressing lines had substantial levels of APX3 mRNA and protein. The H2O2 can be converted to more reactive toxic molecules, e.g. .OH, if it is not quickly removed from plant cells. The expression of APX3 in tobacco could protect leaves from oxidative stress damage caused by aminotriazole which inhibits catalase activity that is found mainly in glyoxysomes and peroxisomes and leads to accumulation of H2O2 in those organelles. However, these plants did not show increased protection from oxidative damage caused by paraquat which leads to the production of reactive oxygen species in chloroplasts. Therefore, protection provided by the expression of APX3 seems to be specific against oxidative stress originated from peroxisomes, not from chloroplasts, which is consistent with the hypothesis that APX3 is a peroxisomal membrane-bound antioxidant enzyme.  相似文献   

17.
Stimulation of human lung fibroblast cells with TGF-beta1 resulted in a transient burst of reactive oxygen species with maximal increase at 5 min after treatment. This reactive oxygen species increase was inhibited by the antioxidant, N-acetyl-l -cysteine (NAC). TGF-beta1 treatment stimulated IL-6 gene expression and protein synthesis in human lung fibroblast cells. Antioxidants including NAC, glutathione, and catalase reduced TGF-beta1-induced IL-6 gene expression, and direct H2O2 treatment induced IL-6 expression in a dose-dependent manner. NAC also reduced TGF-beta1-induced AP-1 binding activity, which is involved in IL-6 gene expression. It has been reported that Ca2+ influx is stimulated by TGF-beta1 treatment. EGTA suppressed TGF-beta1- or H2O2-induced IL-6 expression, and ionomycin increased IL-6 expression, with simultaneously modulating AP-1 activity in the same pattern. PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase/extracellular signal-related kinase kinase 1, suppressed TGF-beta1- or H2O2-induced IL-6 and AP-1 activation. In addition, TGF-beta1 or H2O2 increased MAPK activity which was reduced by EGTA and NAC, suggesting that MAPK is involved in TGF-beta1-induced IL-6 expression. Taken together, these results indicate that TGF-beta1 induces a transient increase of intracellular H2O2 production, which regulates downstream events such as Ca2+ influx, MAPK, and AP-1 activation and IL-6 gene expression.  相似文献   

18.
We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.  相似文献   

19.
Influence of mediators of the signal systems of salicylic (SA) and jasmonic (JA) acids and their mixture on reactive oxygen species' (ROS) (superoxide radical O2*- and H2O2) generation and activity of oxidoreductases (oxalate oxidase, peroxidase and catalase) in leaves of wheat Triticum aestivum L. infected by Septoria leaf blotch pathogen Septoria nodorum Berk. has been studied. Presowing treatment of seeds by SA and JA decreased the development rate of fungus on wheat leaves. SA provided earlier inductive effect on production of O2*- and H2O2 compared with JA. The protective effect of the salicylic and jasmonic acids against Septoria leaf blotch pathogen was caused by activation of oxalate oxidase, induction of anion and cation peroxidases, and decrease of catalase activity. Ability of compounds to stimulate ROS in the plant tissues can be used as criteria for evaluation of immune-modulating activity of new substances for protection of the plants.  相似文献   

20.
The influence of oxygen availability during cultivation on the biosynthetic processes and enzymatic activities in the microaerophilic bacterium Spirillum winogradskii D-427 was studied, and the roles played by different systems of the defense against oxidation stress were determined. The metabolic adjustments caused by transition from microaerobic (2% O2) aerobic conditions (21% O2 of the gas phase) were found to slow down constructive metabolism and increase synthesis of exopolysaccharides as a means of external protection of cells from excess oxygen. This resulted in a twofold decline of the growth yield coefficient. Even though the low activity of catalase is compensated for by a multifold increase in the activities of other cytoplasmic enzymes protecting from toxic forms of O2--peroxidase and enzymes of the redox system of glutathione (glutathione peroxidase and glutathione reductase)--massive lysis of cells starts in the mid-exponential phase and leads to culture death in the stationary phase because of H2O2 accumulation in the periplasm (up to 10 micrograms/mg protein). The absence in cells of cytochrome-c-peroxidase, a periplasmic enzyme eliminating H2O2, was shown. It follows that the major cause of oxidative stress in cells is that active antioxidant defenses are located in the cytoplasm, whereas H2O2 accumulates in the periplasm due to the lack of cytochrome-c-peroxidase. The addition to the medium of thiosulfate promotes elimination of H2O2, stops cell lysis under aerobic conditions, lends stability to cultures, and results in a threefold increase in the growth yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号