首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Prevention of osmotic swelling of retinal glial (Müller) cells is required to avoid detrimental decreases in the extracellular space volume during intense neuronal activity. Here, we show that glial cells in slices of the wildtype mouse retina maintain the volume of their somata constant up to ∼4 min of perfusion with a hypoosmolar solution. However, calcium chelation with BAPTA/AM induced a rapid swelling of glial cell bodies. In glial cells of retinas from inositol-1,4,5-trisphosphate-receptor type 2-deficient (IP3R2−/−) mice, hypotonic conditions caused swelling of the cell bodies without delay. Exogenous ATP (acting at P2Y1 receptors) prevented the swelling of glial cells in retinal slices from wildtype but not from IP3R2−/− mice. Müller cells from IP3R2−/− mice displayed a strongly reduced amplitude of the ATP-evoked calcium responses as compared to cells from wildtype mice. It is concluded that endogenous calcium signaling mediated by IP3R2 is required for the osmotic volume regulation of retinal glial cells.  相似文献   

2.
Although the effects of Δ9‐tetrahydrocannabinol (THC) on ovarian physiology have been known for many decades, its mechanism of action in the rat ovary remains poorly understood. The effects of THC and endocannabinoids on many cell types appear to be mediated through the G‐protein‐coupled CB1 and CB2 receptors. Evidence also suggests that the concentration of the endocannabinoid anandamide is regulated by cellular fatty acid amide hydrolase (FAAH). Therefore, we examined the rat ovary for the presence of CB1 and CB2 receptors and FAAH. The CB1 receptor was present in the ovarian surface epithelium (OSE), the granulosa cells of antral follicles, and the luteal cells of functional corpus luteum (CL). The granulosa cells of small preantral follicles, however, did not express the CB1 receptor. Western analysis also demonstrated the presence of a CB1 receptor. In both preantral and antral follicles, the CB2 receptor was detected only in the oocytes. In the functional CL, the CB2 receptor was detected in the luteal cells. FAAH was codistributed with CB2 receptor in both oocytes and luteal cells. FAAH was also present in the OSE, subepithelial cords of the tunica albuginea (TA) below the OSE, and in cells adjacent to developing preantral follicles. Western analysis also demonstrated the presence of FAAH in oocytes of both preantral and antral follicles. Our observations provide potential explanation for the effects of THC on steroidogenesis in the rat ovary observed by earlier investigators and a role for FAAH in the regulation of ovarian anandamide. Anat Rec 293:1425–1432, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The activation of the cannabinoid receptor type‐2 (CB2) afforded neuroprotection in amyotrophic lateral sclerosis (ALS) models. The objective of this study was to further investigate the relevance of the CB2 receptor through investigating the consequences of its inactivation. TDP‐43(A315T) transgenic mice were crossed with CB2 receptor knock‐out mice to generate double mutants. Temporal and qualitative aspects of the pathological phenotype of the double mutants were compared to TDP‐43 transgenic mice expressing the CB2 receptor. The double mutants exhibited significantly accelerated neurological decline, such that deteriorated rotarod performance was visible at 7 weeks, whereas rotarod performance was normal up to 11 weeks in transgenic mice with intact expression of the CB2 receptor. A morphological analysis of spinal cords confirmed an earlier death (visible at 65 days) of motor neurons labelled with Nissl staining and ChAT immunofluorescence in double mutants compared to TDP‐43 transgenic mice expressing the CB2 receptor. Evidence of glial reactivity, measured using GFAP and Iba‐1 immunostaining, was seen in double mutants at 65 days, but not in TDP‐43 transgenic mice expressing the CB2 receptor. However, at 90 days, both genotypes exhibited similar changes for all these markers, although surviving motor neurons of transgenic mice presented some morphological abnormalities in absence of the CB2 receptor that were not as evident in the presence of this receptor. This faster deterioration seen in double mutants led to premature mortality compared with TDP‐43 transgenic mice expressing the CB2 receptor. We also investigated the consequences of a pharmacological inactivation of the CB2 receptor using the selective antagonist AM630 in TDP‐43 transgenic mice, but results showed only subtle trends towards a greater deterioration. In summary, our results confirmed the potential of the CB2 receptor agonists as a neuroprotective therapy in ALS and strongly support the need to progress towards an evaluation of this potential in patients.  相似文献   

4.
Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders.  相似文献   

5.
We have recently reported that disruption of nuclear erythroid 2 P45-related factor 2 (Nrf2) enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles (DEP) in mice. C57BL/6 Nrf2 knockout (Nrf2−/−) mice and wild-type (Nrf2+/+) mice were further exposed to low-dose DEP for 7 h/day, 5 days/week, for a maximum of 8 weeks. After exposure to DEP for 5 weeks, allergic airway inflammation was generated in the mice by intraperitoneal sensitization with OVA followed by intranasal challenge. Nrf2−/− mice exposed to relatively low-dose DEP showed significantly increased percentage changes relative to the OVA alone group in terms of airway hyperresponsiveness (AHR) and inflammatory cells, levels of IL-5 and thymus and activation regulated chemokine (TARC) in bronchoalveolar lavage (BAL) fluid than did Nrf2+/+ mice. Lung tissues of Nrf2−/− mice after DEP exposure showed inflammatory cell infiltrates, and increased PAS staining-positive mucus cell hyperplasia. In contrast, the percentage changes relative to the OVA group in the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in whole blood was higher in Nrf2+/+ mice than in Nrf2−/− mice. By using Nrf2−/− mice, it was shown for the first time that relatively low-dose DEP exposure induces oxidant stress, and that host anti-oxidant responses play a key role in the development of DEP-induced exacerbation of allergic airway inflammation.  相似文献   

6.
7.
It has been previously reported that vasopressin 1b receptor knockout (Avpr1b−/−) mice have reduced levels of aggressive behavior compared to wildtype littermates. However, as the background of the mice was always a mixture of 129/SvJ and C57BL/6, we wanted to determine if the phenotype persisted when our laboratory line was crossed with a wild-derived sub-species of house mice. To this end, we crossed our Avpr1b−/− mice with Mus musculus castaneus, one of the few sub-species that will breed with laboratory strains. Subsequent F2 offspring were tested in a resident-intruder behavioral test to assess aggressive behavior. We found that even on this more “wild” background, Avpr1b−/− mice continued to demonstrate longer attack latencies and fewer attacks in a resident-intruder test than wildtype littermates. These findings are consistent with previous reports of reduced aggressive behavior in Avpr1b−/− mice and show that the deficit does persist on a different background strain. Further, these findings confirm the importance of the Avpr1b to normal displays of social forms of aggressive behavior.  相似文献   

8.
Components of high molecular-weight (PI) obtained from Ascaris suum extract down-regulate the Th1/Th2-related immune responses induced by ovalbumin (OVA)-immunization in mice. Furthermore, the PI down-modulates the ability of dendritic cells (DCs) to activate T lymphocytes by an IL-10-mediated mechanism. Here, we evaluated the role of toll like receptors 2 and 4 (TLR2 and 4) in the modulatory effect of PI on OVA-specific immune response and the PI interference on DC full activation. An inhibition of OVA-specific cellular and humoral responses were observed in wild type (WT) or in deficient in TLR2 (TLR2−/−) or 4 (TLR4−/−) mice immunized with OVA plus PI when compared with OVA-immunized mice. Low expression of class II MHC, CD40, CD80 and CD86 molecules was observed in lymph node (LN) cells from WT, TLR2−/− or TLR4−/− mice immunized with OVA plus PI compared with OVA-primed cells. We also verified that PI was able to modulate the activation of DCs derived from bone marrow of WT, TLR2−/− or TLR4−/− mice induced in vitro by agonists of TLRs, as observed by a decreased expression of class II MHC and costimulatory molecules and by low secretion of pro-inflammatory cytokines. Its effect was accompanied by IL-10 synthesis. In this sense, the modulatory effect of PI on specific-immune response and DC activation is independent of TLR2 or TLR4.  相似文献   

9.

Background

Sphingosine-1-phosphate (S1P) influences activation, migration and death of immune cells. Further, S1P was proposed to play a major role in the induction and promotion of allergic diseases. However, to date only limited information is available on the role of S1P in food allergy.

Objective

We aimed to investigate the role of sphingosine-kinase (SphK) 1 and 2, the enzymes responsible for endogenous S1P production, on the induction of food allergy.

Methods and results

Human epithelial colorectal CaCo2 cells stimulated in vitro with S1P revealed a decrease of transepithelial resistance and enhanced transport of FITC labeled OVA. We studied the effect of genetic deletion of the enzymes involved in S1P production on food allergy induction using a mouse model of food allergy based on intragastrically (i.g.) administered ovalbumin (OVA) with concomitant acid-suppression. Wild-type (WT), SphK1−/− and SphK2−/− mice immunized with OVA alone i.g. or intraperitoneally (i.p.) were used as negative or positive controls, respectively. SphK1- and SphK2-deficient mice fed with OVA under acid-suppression showed reduced induction of OVA specific IgE and IgG compared to WT mice, but had normal responses when immunized by the intraperitoneal route. Flow cytometric analysis of spleen cells revealed a significantly reduced proportion of CD4+ effector T-cells in both SphK deficient animals after oral sensitization. This was accompanied by a reduced accumulation of mast cells in the gastric mucosa in SphK-deficient animals compared to WT mice. Furthermore, mouse mast cell protease-1 (mMCP-1) levels, an IgE-mediated anaphylaxis marker, were reliably elevated in allergic WT animals.

Conclusion

Modulation of the S1P homeostasis by deletion of either SphK1 or SphK2 alters the sensitization and effector phase of food allergy.  相似文献   

10.
11.
Aquaporin-4 (AQP4) water channels expressed on glia have been implicated in maintaining the volume of extracellular space (ECS). A previous diffusion study employing small cation tetramethylammonium and a real-time iontophoretic (RTI) method demonstrated an increase of about 25% in the ECS volume fraction (α) in the neocortex of AQP4−/− mice compared to AQP4+/+ mice but no change in the hindrance imposed to diffusing molecules (tortuosity λ). In contrast, other diffusion studies employing large molecules (dextran polymers) and a fluorescence recovery after photobleaching (FRAP) method measured a decrease of about 10%–20% in λ in the neocortex of AQP4−/− mice. These conflicting findings on λ would imply that large molecules diffuse more readily in the enlarged ECS of AQP4−/− mice than in wild type but small molecules do not. To test this hypothesis, we used integrative optical imaging (IOI) to measure tortuosity with a small Alexa Fluor 488 (molecular weight [MW] 547, λAF) and two large dextran polymers (MW 3000, λdex3 and MW 75,000, λdex75) in the in vitro neocortex of AQP4+/+ and AQP4−/− mice. We found that λAF=1.59, λdex3=1.76 and λdex75=2.30 obtained in AQP4−/− mice were not significantly different from λAF=1.61, λdex3=1.76, and λdex75=2.33 in AQP4+/+ mice. These IOI results demonstrate that λ measured with small and large molecules each remain unchanged in the enlarged ECS of AQP4−/− mice compared to values in AQP4+/+ mice. Further analysis suggests that the FRAP method yields diffusion parameters not directly comparable with those obtained by IOI or RTI methods. Our findings have implications for the role of glial AQP4 in maintaining the ECS structure.  相似文献   

12.
The binding sites for agonists and antagonist of orexin receptors are not know, hampering progressive drug design approaches. In the current study, we utilized chimaeric orexin receptor approach to map the receptor areas contributing to the selectivity of the classical antagonist, SB-334867, for OX1 receptors. Altogether ten chimaeras between OX1 and OX2 orexin receptors were utilized. The receptors were transiently expressed in HEK-293 cells. The ability (KB) of SB-334867 to inhibit orexin-A-induced inositol phosphate release (phospholipase C activity) was measured. The results, in synthesis, suggest that there are several possible interactions contributing to the high affinity binding, all of which are not required simultaneously. This is indicated by the fact that most of the chimaeras display affinity (at least somewhat) higher than OX2. As previously shown for the agonist distinction, the second quarter of the receptor, from the C-terminal part of the transmembrane helix 2 to the transmembrane helix 4 seems to be most central also for SB-334867 binding, but also the third quarter, from the transmembrane helix 4 to the transmembrane helix 6 is able to contribute (and compensate for loss of other sites). A previous study has suggested that amino acids conserved between OX1 and OX2 receptors would somehow confer selectivity for subtype-selective antagonists. In contrast to previous findings, our results indicate that the amino acids distinct between the receptor subtypes are in key position.  相似文献   

13.

Objective

Dendritic cells (DCs) have long been recognized as potential therapeutic targets of rheumatoid arthritis (RA). Increasing evidence has showed that DCs are capable of suppressing autoimmunity by expanding FoxP3+ regulatory T cells (Treg), which in turn exert immunosuppression by increasing TGFβ-1. In the SKG mice, activated DC prime autoreactive T cells causing autoantibody production and an inflammatory arthritic response. Recently, we reported that CC-chemokine receptor-2 deficient (Ccr2−/−) mice had impaired DCs migration and reduced CD8α+ DCs in the C57Bl/6J mice strain and that these mice were more susceptible to collagen antibody-induced arthritis (CAIA), compared to wild type mice. To examine the mechanism by which DCs contribute to the increased susceptibility of arthritis in Ccr2−/− mice, we tested the hypothesis that CD8α+ DCs are protective (tolerogenic) against autoimmune arthritis by examining the role of CD8α+ DCs in Ccr2−/− and SKG mice.

Methods

To examine the mechanism by which DCs defects lead to the development of arthritis, we used two murine models of experimental arthritis: collagen-induced arthritis (CIA) in DBA1/J mice and zymosan-induced arthritis in SKG mice. DBA1/J mice received recombinant fms-like tyrosine kinase 3 ligand (Flt3L) injections to expand endogenous DCs populations or adoptive transfers of CD8α+ DCs.

Results

Flt3L-mediated expansion of endogenous CD8α+ DCs resulted in heightened susceptibility of CIA. In contrast, supplementation with exogenous CD8α+ DCs ameliorated arthritis in Ccr2−/− mice and enhanced TGFβ1 production by T cells. Furthermore, SKG mice with genetic inactivation of CCR2 did not affect the numbers of DCs nor improve the arthritis phenotype.

Conclusion

CD8α+ DCs were tolerogenic to the development of arthritis. CD8α+ DCs deficiency heightened the sensitivity to arthritis in Ccr2−/− mice. Ccr2 deficiency did not alter the arthritic phenotype in SKG mice suggesting the arthritis in Ccr2−/− mice was T cell-independent.  相似文献   

14.
Overall asthmatic symptoms can be controlled with diverse therapeutic agents. However, certain symptomatic individuals remain at risk for serious morbidity and mortality, which prompts the identification of novel therapeutic targets and treatment strategies. Thus, using an adjuvant-free T helper type 2 (Th2) murine model, we have deciphered the role of interleukin (IL)-1 signalling during allergic airway inflammation (AAI). Because functional IL-1β depends on inflammasome activation we first studied asthmatic manifestations in specific inflammasome-deficient [NACHT, LRR and PYD domains-containing protein 3 (NLRP3−/−) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC−/−)] and IL-1 receptor type 1−/− (IL-1R1−/−) mice on the BALB/c background. To verify the onset of disease we assessed cellular infiltration in the bronchial regions, lung pathology, airway hyperresponsiveness and ovalbumin (OVA)-specific immune responses. In the absence of NLRP3 inflammasome-mediated IL-1β release all symptoms of AAI were reduced, except OVA-specific immunoglobulin levels. To address whether manipulating IL-1 signalling reduced asthmatic development, we administered the IL-1R antagonist anakinra (Kineret®) during critical immunological time-points: sensitization or challenge. Amelioration of asthmatic symptoms was only observed when anakinra was administered during OVA challenge. Our findings indicate that blocking IL-1 signalling could be a potential complementary therapy for allergic airway inflammation.  相似文献   

15.
The type 2 cannabinoid receptors (CB2R) have gained much attention recently due to their important regulatory role in a host of pathophysiological processes. However, the exact biological function of CB2R and how this function might change depending on disease progression remains unclear and could be better studied with highly sensitive and selective imaging tools for identifying the receptors. Here we report the first near infrared fluorescence imaging probe (NIR760-XLP6) that binds preferentially to CB2R over the type 1 cannabinoid receptors (CB1R). The selectivity of the probe was demonstrated by fluorescence microscopy using DBT-CB2 and DBT-CB1 cells. Furthermore, in mouse tumor models, NIR760-XLP6 showed significantly higher uptake in DBT-CB2 than that in DBT-CB1 tumors. These findings indicate that NIR760-XLP6 is a promising imaging tool for the study of CB2R regulation.  相似文献   

16.
The Thy-1 antigens or rat brain and thymus have been isolated and chemically characterized, but those of mice have not been identified. Moreover, it is uncertain whether the antigens are glycolipids or glycoproteins. This study with highly purified preparations of gangliosides GM1, 1GD1a, GD1b and GT1b from bovine brain and several ganglioside fractions from mouse brain showed that Thy-1 activity does not reside in gangliosides, but rather in the chloroform-methanol-insoluble residue of brain remaining after extraction of gangliosides. The antigen could be solubilized from this residue with a non-ionic detergent. The antigenic activity of the solubilized preparation was heat-labile but resistant to periodate. The chemical properties of the Thy-1 antigen of mouse brain are discussed.  相似文献   

17.
The anticonvulsant effect of cannabinoids (CB) has been shown to be mediated by the activation of the CB1 receptor. This study evaluates the anticonvulsant activity of (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN55,212-2, CB agonist) alone or preceded by the administration of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251, selective CB1 antagonist) in an experimental in vivo model of complex partial seizures (maximal dentate gyrus activation – MDA) in the rat. WIN55,212-2 (21 mg kg−1) exerted an anticonvulsant effect, significantly reduced by the pre-treatment with AM251 (1 mg kg−1, 30 min interval). Surprisingly, AM251, administered alone at the same dose, failed to induce any modification in MDA responses. Our data suggest the involvement of the CB system in the inhibitory control of hyperexcitability phenomena in a model of acute partial epilepsy. Although the MDA model per se does not induce a basal activation of CB1 receptors, as suggested by the lack of efficacy of AM251 when administered alone, the partial suppression of WIN55,212-2-induced effects in rats pre-treated with AM251 allows to hypothesise that the WIN55,212-2-induced antiepileptic effect is strictly linked to an increased CB1 receptor activation or to the involvement of further receptor subtypes.  相似文献   

18.

Purpose

Lactobacilli are probiotic bacteria that are effective in the management of allergic diseases or gastroenteritis. It is hypothesized that such probiotics have immunoregulatory properties and promote mucosal tolerance. Our goal was to investigate whether Lactobacillus casei rhamnosus Lcr35 could inhibit airway inflammation in an ovalbumin (OVA)-induced murine model of asthma.

Methods

BALB/c mice aged 6 weeks were used in the present study. Lactobacillus casei rhamnosus Lcr35 was administered daily, starting 1 week prior to the first OVA sensitization (group 1) and 2 days before the first 1% OVA airway challenge (group 2). Mice that received only saline at both sensitization and airway challenge time points were used as negative controls (group 3), and those that had OVA-induced asthma were used as positive controls (group 4). Airway responsiveness to methacholine was assessed, and bronchoalveolar lavage (BAL) was performed. At the endpoint of the study, total IgE as well as OVA-specific IgE, IgG1 and IgG2a in serum was measured by enzyme-linked immunosorbent assay. Lung pathology was also evaluated.

Results

Airway hyperresponsiveness, total cell counts and the proportion of eosinophils in BAL fluid were significantly decreased in group 1 compared with group 4 (P<0.05). Total serum IgE levels were also significantly decreased in group 1 compared with group 4. Serum levels of OVA-specific IgE, IgG1 and IgG2a were not significantly influenced by treatment with Lcr35. There was significantly less peribronchial and perivascular infiltration of inflammatory cells in group 1 compared with group 4; however, there were no significant differences in methacholine challenge, BAL, serology or histology between groups 2 and 4.

Conclusions

Oral treatment with Lcr35 prior to sensitization can attenuate airway inflammation and hyperreactivity in a mouse model of allergic airway inflammation. These results suggest that Lcr35 may have potential for preventing asthma.  相似文献   

19.
DNA methyltransferase 1 (Dnmt1) is essential for the maintenance of hematopoietic and somatic stem cells in mice; however, its roles in human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are still elusive. In the present study, we investigated DNMT1 functions in the maintenance of human colon CSCs/CICs using the human colon cancer cell line HCT116 (HCT116 w/t) and its DNMT1 knockout cell line (DNMT1−/−). The rates of CSCs/CICs were evaluated by side population (SP) analysis, ALDEFLUOR assay and expression of CD44 and CD24. SP, ALDEFLUOR-positive (ALDEFLUOR+) and CD44-positive and CD24-positive (CD44+CD24+) cell rates were lower in DNMT1−/− cells than in HCT116 w/t cells. Since CSCs/CICs have higher tumor-initiating ability than that of non-CSCs/CICs, the tumor-initiating abilities were addressed by injecting immune deficient (NOD/SCID) mice. DNMT1−/− cells showed less tumor-initiating ability than did HCT116 w/t cells, whereas the growing rate of DNMT1−/− cells showed no significant difference from that of HCT116 cells both in vitro and in vivo. Similar results were obtained for cells in which DNMT1 had been transiently knocked-down using gene-specific siRNAs. Taken together, these results indicate that DNMT1 is essential for maintenance of colon CSCs/CICs and that short-term suppression of DNMT1 might be sufficient to disrupt CSCs/CICs.  相似文献   

20.
Background The pathogenesis of aspirin‐induced asthma (AIA) is presumed to involve the aspirin/non‐steroidal anti‐inflammatory drug (NSAID)‐induced abnormal metabolism of arachidonic acid, resulting in an increase in 5‐lipoxygenase (5‐LO) metabolites, particularly leukotriene C4 (LTC4). However, the role of LTC4 in the development of AIA has yet to be conclusively demonstrated. Objective The aim of this study was to evaluate the contribution of the lipid product LTC4 secreted by the 5‐LO pathway to the pathogenesis of AIA. Methods To evaluate antigen‐induced airway inflammation, the concentrations of T‐helper type 2 cytokine in bronchoalveolar lavage fluid (BALF) obtained from LTC4 synthase‐transgenic (Tg) and wild‐type (WT) mice after challenge with ovalbumin were measured. Subsequently, the ex vivo and in vivo effects of the NSAID sulpyrine were investigated in these Tg and WT mice by measuring the secretion of LTC4 from sulpyrine‐treated BAL cells and the levels of LTC4 in BALF following challenge with sulpyrine. Finally, the sulpyrine‐induced airway response by the administration of pranlukast, an antagonist of the cysteinyl (cs)‐LT1 receptor, was analysed. Results The concentrations of IL‐4, ‐5, and ‐13 in BALF from Tg mice were significantly higher than those in WT mice. In addition, sulpyrine augmented the secretion of LTC4 in BALF and by BAL cells in Tg mice, but not in WT mice. Additionally, the increased airway resistance induced by sulpyrine could be reduced by treatment with pranlukast. Furthermore, the secretion of LTC4 from mast cells, eosinophils, and macrophages was increased in the allergen‐stimulated LTC4 synthase gene Tg mice, even in the absence of sulpyrine, as well as in BAL cells after sulpyrine. Conclusion and clinical relevance The over‐expression of the LTC4 synthase in a mouse asthma model also replicates the key features of AIA. And our study supports that cys‐LTs play a major role in the pathogenesis of AIA in patients with chronic asthma. Cite this as: H. Hirata, M. Arima, Y. Fukushima, K. Honda, K. Sugiyama, T. Tokuhisa and T. Fukuda, Clinical & Experimental Allergy, 2011 (41) 1133–1142.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号