共查询到20条相似文献,搜索用时 22 毫秒
1.
SUN Zhigao FAN Shuanshi GUO Kaihua 《化工学报》2003,54(Z1):29-32
Additives were used to increase gas hydrate formation rate and storage capacity. Experimental tests of methane hydrate formation were carried out in surfactant water solutions in a high-pressure cell. Sodium dodecyl sulfate (SDS) and alkyl polysaccharide glycoside (APG) were used to increase hydrate formation. The effect of SDS on hydrate formation is more pronounced compared APG. Cyclopentane (CP) also improves hydrate formation rates while it cannot increase methane gas storage capacity. 相似文献
2.
3.
4.
KUANG Li FAN Shuanshi 《化工学报》2003,54(Z1):81-85
The effect of diluted solution's magnetization on induction time and growth period of natural gas hydrate (NGH) has been investigated in quiescent reaction system at pressure of 4.5 MPa and temperature of 274 K with SDS as surfactant, by using volume fixed and pressure falling method. Experimental results show that magnetization will have effect on the induction time of NGH. After magnetization with magnetic field intensity of 0.33 T, the induction time of NGH has been reduced to 47 min (average) from 99 min (average) in which there is no magnetization. On the other hand, the induction time has been prolonged after magnetization of the diluted solution with magnetic field intensity of 0.05 T, 0.11 T, 0.22 T, 0.44 T. Especially with magnetic field intensity of 0.11 T, the induction time had even been prolonged to 431 min (average). The effect of magnetization on the growth period of NGH has not been found at the experimental condition. 相似文献
5.
LI Jinping LIANG Deqing GUO Kaihua FAN Shuanshi WANG Ruzhu 《化工学报》2003,54(Z1):98-101
Refrigerant gas hydrates have brilliant prospects as cool storage material of air-conditioning system. In this paper, when the ratio of the weight of HFC-134a to that of water is 2.17%, systematic experiments have been carried out on the formation process of the HFC-134a gas hydrate including of the phase equilibrium, the influence of supercooling degree, and the influence of agitation. The results indicate that the critical decomposition temperature and the critical decomposition pressure of R134a hydrate is 283.4K and 414K respectively, the formation of gas hydrate was promoted with increasing the supercooling degree and the agitation. However, it is desired that the supercooling degree is smaller. Therefore, it is important problem that the study of optimum of supercooling degree for cool storage system. 相似文献
6.
7.
WANG Shengjie SHEN Jiandong HAO Miaoli LIU Furong 《化工学报》2003,54(Z1):23-28
Natural gas hydrates are crystalline clathrate compounds composed of water and gases of small molecular diameters that can be used for storage and transport of natural gas as a novel method. In the paper a series of experiments of aspects and kinetics for hydrate formed from natural gas and ice were carried out on the industrial small scale production apparatus. The experimental results show that formation conditions of hydrate conversed from ice are independent of induction time, and bigger degrees of supersaturation and supercooling improved the driving force and advanced the hydrate formation. Superpressure is also favorable for ice particle conversion to hydrate. In addition, it was found there have an optimal reaction time during hydrate formation. 相似文献
8.
EQUATION OF STATE BASED HYDRATE MODEL FOR NATURAL GAS SYSTEMS CONTAINING BRINE AND POLAR INHIBITOR
下载免费PDF全文

1 INTRODUCTIONIn the past two decades,as large reserves of hydrocarbons were discovered in the formof natural gas hydrates stored in deep oceans and permafrost regions such reserves mayturn out to become a tremendous energy source in the future.Among the challengingproblems emerged from offshore oil/gas exploration and production,hydrate research re-ceived new impetus. 相似文献
9.
10.
HAO Wenfeng FAN Shuanshi WANG Jinqu 《化工学报》2003,54(Z1):33-36
Three experiments of static state storage method, low-temperature and constant-pressure storage method and low-temperature and constant-pressure storage method were carried out to investigate which method was best in gas hydrate. The relationships of hydrate rate, capacity and liquid temperature versus time were derived and three results were contrasted. The experimental results show lowtemperature and constant-pressure method is better than the other two methods because it's operation period is shorter and storage capacity is larger than the other two. Low-temperature and constant-pressure method is the best method. So new method will be new research objective. 相似文献
11.
12.
引言一些低分子量气体,如石油和天然气中C_1~C_4轻烃、氮气、硫化氢、二氧化碳和惰性气体等,在一定压力和温度的条件下可与水形成一类笼形结构的冰状晶体,即所谓的气体水合物.气体水合物是一类较为特殊的包络化合物:主体水分子通过氢键相互结合形成一种内含空隙的笼形框架,客体分子则被笼罩于这些空隙中.主、客体分子之间的作用力为vanderWaals力.水合物晶体最为常见的两种结构分别称为结构I(体心立方构型)和结构Ⅱ(金刚石构型).甲烷和水形成结构I水合物.文献阐述了开展水合物生成动力学研究的重要意义.但由于水合物生成… 相似文献
13.
添加剂对堇青石合成温度及热膨胀系数的影响 总被引:1,自引:0,他引:1
采用煤系高岭土、滑石、镁砂为原料合成堇青石,主要探讨了添加剂对合成堇青石的性能影响。通过X-Ray衍射(XRD)分析,用K值法求算合成堇青石矿物相含量,在保证矿物相含量的前提下,探讨添加剂对热膨胀系数的影响。研究结果表明:添加剂的使用均能降低合成堇青石的热膨胀系数,不加添加剂的热膨胀系数为2.04×10-6/℃(20~1100℃);加入碳酸钡热膨胀系数为α=1.84×10-6/℃(20~1100℃);加入碳酸锂热膨胀系数为α=1.86×10-6/℃(20~1100℃)。 相似文献
14.
提出了以水合物法储运乙烯,选用阴离子表面活性剂十二烷基硫酸钠(SDS)作为乙烯水合物的生成促进剂进行实验研究,考察了SDS对乙烯水合物生成的促进作用以及乙烯水合物在低温下的热稳定性。结果表明:SDS对乙烯水合物的生成速率和储气密度都有较大提高,对其促进原因进行了初步分析;实验测定乙烯水合物在263~269K的分解平衡压力范围是0.244~0.460MPa,在263~271K进行常压分解时,其分解率随温度升高而升高,在温度低于267K时,乙烯水合物的平衡分解率将降到23.7%以下,其中263K的分解率为5.6%。 相似文献
15.
16.
不同添加剂对氮化硅陶瓷氧化行为的影响 总被引:5,自引:0,他引:5
对Si-Al-Y-O-N系统气压烧结的致密氮化硅陶瓷的氧化研究表明,材料在1100~1400℃温度下氧化,符合抛物线氧化规律。在此温度范围内,氧化活化能为600~730kJ/mol。AlN的引入对材料在低温段(800~1000℃)的抗氧化能力有较大影响。由于在晶界存在易氧化的第二相物质,含AlN作添加剂的氮化硅材料在低温段有较明显的氧化,氧化呈线性规律。 相似文献
17.
添加剂对3Y-TZP材料烧结行为及力学性能的影响 总被引:6,自引:1,他引:5
在3Y-TZP(tetragonal zirconia polycrystals stabilized,3% Y2O3,摩尔分数)中,采用CAS(CaO-Al2O3-SiO2)玻璃粉料为添加剂,使材料在较低的温度下烧结致密,并具有较好的力学性能,发现液相烧结是使试样的烧结温度显著降低的主要原因。探讨了添加剂对试样的烧结特性及力学性能的影响。与加入LAS添加剂的试样相比,CAS试样的抗弯强度好高,而断裂韧性要差,分析了造成这种力学性能的原因。 相似文献
18.
Natural gas hydrates are a kind of nonpolluting and high quality energy resources for future, the reserves of which are about twice of the carbon of the current fossil energy (petroleum, natural gas and coal) on the earth. And it will be the most important energy for the 21st century. The energy balance and numerical simulation are applied to study the schemes of the natural gas hydrates production in this paper, and it is considered that both depressurization and thermal stimulation are effective methods for exploiting natural gas hydrates, and that the gas production of the thermal stimulation is higher than that of the depressurization. But thermal stimulation is non-economic because it requires large amounts of energy. Therefore the combination of the two methods is a preferable method for the current development of the natural gas hydrates. The main factors which influence the production of natural gas hydrates are: the temperature of injected water, the injection rate, the initial saturation of the hydrates and the initial temperature of the reservoir which is the most important factor. 1 Lei Huaiyan, Wang Xianbin. Current Situation of Gas Hydrates Research and Challenges for Future. Acta Sedimentological Sinica, 1999, 17 (3)2 Shi Dou, Zheng Junwei. The Status and Prospects of Research and Exploitation of Natural Gas Hydrate in the World. Advance in Earth Sciences, 1999, 14 (4)3 Chen Huifan4g. Prediction of the Conditions for the Forming of Natural Gas Hydrate. Journal of Xi'an Petroleum Institute, 1994, 9 (1)4 Yao Yucheng, Yin Fushan. Progressin Study of Natural Gas Hydrates. Progress in Chemistry, 1997, 9 (3)5 Zhao Shengeai. Current Situation of Gas Hydrate and Our ??Country's Policy. Advancein Earth Sciences, 2002, 17 (3)6 Zhou Huaiyang, Peng Xiaotong. Development in Technology of Prospecting and Exploitation for Gas Hydrates. Geology and Prospecting, 2001, 38 (1)7 Zhu Yuenian, Shi Buqing. Control Effects of Natural Gas Hydrates on Oil and Gas Accumulation and Reservoir Preservation. Natural Gas Industry, 2000, 20 (3)8 Wim J A M Swinkels, Rik J J Drenth. Thermal Reservoir Simulation Model of Production from Naturally Occurring Gas Hydrate Accumulations. SPE 565509 Moridis G J, Collett T S, Dallimore S R, Tohru Satoh. Numerical Studies of Gas Production from Several CH_4-Hydrate Zones at the Mallik Site. LBNL 50257. Mackenzie Delta, Canada 相似文献
19.
采用化学气相沉积工艺合成了石英玻璃,研究了沉积速率与载料气体之间的关系.利用扫描电子显微镜观察火焰中SiO2粒子微观形态和尺寸.通过对SiCl4水解、氧化反应速率的计算表明:在一定温度下,当同时存在充足的H2O和O2时,SiCl4氧化反应速率远高于水解反应速率.当载料气体为H2,Sicl4流量为25g/min时,观察火焰中SiO2粒子的微观形态发现存在大量非球状无定形聚集体,表明SiCl4未反应完全,沉积速率较低,约为220~240 g/h.同样SiCl4流量下.采用O2作为载料气体时火焰中颗粒均为球状,SiCl4全部反应,沉积速率较高,达到300~350 g/h.当SiCl4流量为15 g/min时,载料气体的改变对SiO2粒子形态和尺寸没有影响,SiCl4可以全部反应,沉积速率基本相同.当SiCl4流量较高(25 g/min)时,载料气体对反应机理和沉积速率有显著影响,若要SiCl4在极短时间内完全反应生成球状SiO2粒子,需选择O2作为载料气体,充足的O2保证SiCl4可以通过氧化反应全部反应完毕,沉积速率相应提高. 相似文献
20.
富乙烯气预分馏系统对裂解装置的影响分析 总被引:1,自引:0,他引:1
燕山石化于2005年建成一套回收催化裂化干气制乙烯系统,包括干气变压吸附与净化装置(在炼厂)和富乙烯气预分馏装置(在乙烯厂).分析了富乙烯气预分馏装置的运行对乙烯装置的影响及解决措施. 相似文献