首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method of microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate cadmium sulfide (CdS) thin films. The superhydrophobic surface with a water contact angle (CA) of 151 degrees was obtained. Via a scanning electron microscopy (SEM) observation, the film was proved having a porous micro/nano-binary structure which can change the property of the surface and highly enhance the hydrophobicity of the film. A possible mechanism was suggested to describe the growth of the porous structure, in which the microwave heating takes an important role in the formation of two distinct characteristic dimensions of CdS precipitates, the growth of CdS sheets in micro-scale and sphere particles in nano-scale. The superhydrophobic films may provide novel platforms for photovoltaic, sensor, microfluidic and other device applications.  相似文献   

2.
We first fabricated the superhydrophobic film with a water contact angle of 178 degrees based on a perpendicular nanopin fractal structure by a bottom-up process. Until now, only materials with an original water contact angle larger than 90 degrees , which is classified as hydrophobicity, could be used to fabricate the superhydrophobic film (>170 degrees ) according to the possible fractal structure by a top-down process. Now, in this work, a water contact angle of about 178 degrees can be achieved using a lauric acid-coated film with an original contact angle of 75 degrees , which is classified as hydrophilicity, based on an ideal fractal structure for the superhydrophobic surface which is fabricated by the nanosize pin with 6.5 nm diameter.  相似文献   

3.
Transparent superhydrophobic films based on silica nanoparticles   总被引:1,自引:0,他引:1  
We demonstrate a layer-by-layer processing scheme that can be utilized to create transparent superhydrophobic films from SiO2 nanoparticles of various sizes. By controlling the placement and level of aggregation of differently sized nanoparticles within the resultant multilayer thin film, it is possible to optimize the level of surface roughness to achieve superhydrophobic behavior with limited light scattering. Transparent superhydrophobic films were created by the sequential adsorption of silica nanoparticles and poly(allylamine hydrochloride). The final assembly was rendered superhydrophobic with silane treatment. Optical transmission levels above 90% throughout most of the visible region of the spectrum were realized in optimized coatings. Advancing water droplet contact angles as high as 160 degrees with low contact angle hysteresis (<10 degrees ) were obtained for the optimized multilayer thin films. Because of the low refractive index of the resultant porous multilayer films, they also exhibited antireflection properties.  相似文献   

4.
The present work reports a simple and economic route for production and characterization of stable superhydrophobic surfaces from thin copper layers coated on arbitrary solid substrates. The thin copper layer was anodized in a 2 M aqueous solution of potassium hydroxide to form a thin film of copper hydroxide nanoneedles; then the film was reacted with n-dodecanethiol to form a thermally stable Cu(SC12H25)2 superhydrophobic coating. The contact angle of the modified nanoneedle surface was higher than 150 degrees , and its tilt angle was smaller than 2 degrees . Furthermore, the surface fabricated on copper foil kept its superhydrophobic property after heating at 160 degrees C in air for over 42 h. This technique has also been applied for fabrication of copper wire with superhydrophobic submicrofiber coating to mimic water strider legs. The maximal supporting force of the superhydrophobic copper column has also been investigated in comparison to real water striders.  相似文献   

5.
郑建勇  冯杰  钟明强 《高分子学报》2010,(10):1186-1192
以碳酸钙(CaCO3)颗粒层为模板,运用简单的热压和酸蚀刻相结合的方法制备聚合物超亲水/超疏水表面.首先在玻璃基底上均匀铺撒一层CaCO3颗粒,以此作为模板,通过热压线性低密度聚乙烯(LLDPE)使CaCO3颗粒均匀镶嵌在聚合物表面,获得了超亲水性质;进一步经酸蚀得到了具有微米和亚微米多孔结构的表面,其水滴静态接触角(WCA)可达(152.7±0.8)°,滚动角小于3°,具备超疏水性质.表面浸润性能和耐水压冲击性能研究表明该超疏水表面具有良好的稳定性和持久性.用同样工艺微模塑/酸蚀刻其它疏水性聚合物,得到类似结果.  相似文献   

6.
A novel strategy for a tunable sigmoidal wetting transition from superhydrophobicity to superhydrophilicity on a continuous nanostructured hybrid film via gradient UV-ozone (UVO) exposure is presented. Along a single wetting gradient surface (40 mm), we could visualize the superhydrophobic (thetaH2O > 165 degrees and low contact angle hysteresis) transition (165 degrees > thetaH2O > 10 degrees ) and superhydrophilic (thetaH2O < 10 degrees within 1 s) regions simply through the optical images of water droplets on the surface. The film is prepared through layer-by-layer assembly of negatively charged silica nanoparticles (11 nm) and positively charged poly(allylamine hydrochloride) with an initial deposition in a fractal manner. The extraordinary wetting transition on chemically modified nanoparticle layered surfaces with submicrometer- to micrometer-scale pores represents a competition between the chemical wettability and hierarchical roughness of surfaces as often occurs in nature (e.g., lotus leaves, insect wings, etc).  相似文献   

7.
We report the formation of a stable superhydrophobic surface via aligned carbon nanotubes (CNTs) coated with a zinc oxide (ZnO) thin film. The CNT template was synthesized by chemical vapor deposition on an Fe-N catalyst layer. The ZnO film, with a low surface energy, was deposited on the CNT template by the filtered cathodic vacuum arc technique. Contact angle measurement reveals that the surface of the ZnO-coated CNTs is superhydrophobic with water contact angle of 159 degrees . Unlike the uncoated CNTs surface, the ZnO-coated CNTs surface shows no sign of water seepage even after a prolonged period of time. The wettability of the surface can be reversibly changed from superhydrophobicity to hydrophilicity by alternation of ultraviolet (UV) irradiation and dark storage.  相似文献   

8.
This report describes the simple preparation of superhydrophobic and lipophobic surfaces by self-organization. Microporous polymer films of a fluorinated polymer with hexagonally arranged pores were prepared by casting from solution under humid conditions. Hexagonally packed water microdroplets were formed by evaporative cooling on the surface of the casting solution. After solvent evaporation, a honeycomb-patterned polymer film was formed with the water droplet array acting as a template; the water droplets themselves evaporated soon after the solvent. Two porous polymer layers were stacked vertically, separated by pillars at the hexagon vertexes. After peeling off the top layer using adhesive tape, a pincushion-like structure was obtained. Here, we show that superhydrophobic behavior was achieved, with the maximum contact angle, 170 degrees, observed using these pincushion structures. Theoretical calculations fit the experimental results well. The lipophobic properties of the films are also discussed.  相似文献   

9.
A superhydrophobic ZnO thin film was fabricated by the Au-catalyzed chemical vapor deposition method. The surface of the film exhibits hierarchical structure with nanostructures on sub-microstructures. The water contact angle (CA) was 164.3 degrees, turning into a superhydrophilic one (CA < 5 degrees) after UV illumination, which can be recovered through being placed in the dark or being heated. The film was attached tightly to the substrate, showing good stability and durability. The surface structures were characterized by scanning electron microscopy and atomic force microscopy.  相似文献   

10.
A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous surface with various bead-on-string structures was fabricated by electrospinning. PHBV was electrospun at various concentrations and then CF4 plasma treatment was employed to further improve the hydrophobicity of the PHBV fiber surfaces. The surface morphology of the electrospun PHBV mats was observed by scanning electron microscopy (SEM). The surface properties were characterized by water contact angle (WCA) measurements and X-ray photoelectron spectroscopy (XPS). The surface morphology of the electrospun PHBV fibrous mats with the bead-son-string structure varied with the solution concentration. The WCA of all of the electrospun PHBV mats was higher than that of the PHBV film. In particular, a very rough fiber surface including porous beads was observed when PHBV was electrospun from the solution with a concentration of 26 wt%. Also, its WCA further increased from 141 degrees to 158 degrees after CF(4) plasma treatment for 150 s. PHBV can be rendered superhydrophobic by controlling the surface morphology and surface energy, which can be achieved by adjusting the electrospinning and plasma treatment conditions.  相似文献   

11.
Design of a superhydrophobic surface using woven structures   总被引:2,自引:0,他引:2  
The relationship between surface tension and roughness is reviewed. The Cassie-Baxter model is restated in its original form, which better describes the most general cases of surface roughness. Using mechanical and chemical surface modification of nylon 6,6 woven fabric, an artificial superhydrophobic surface was prepared. A plain woven fabric mimicking the Lotus leaf was created by further grafting 1H,1H-perfluorooctylamine or octadecylamine to poly(acrylic acid) chains which had previously been grafted onto a nylon 6,6 woven fabric surface. Water contact angles as high as 168 degrees were achieved. Good agreement between the predictions based on the original Cassie-Baxter model and experiments was obtained. The version of the Cassie-Baxter model in current use could not be applied to this problem since the surface area fractions in this form is valid only when the liquid is in contact with a flat, porous surface. The angle at which a water droplet rolls off the surface has also been used to define a superhydrophobic surface. It is shown that the roll-off angle is highly dependent on droplet size. The roll-off angles of these superhydrophobic surfaces were less than 5 degrees when a 0.5 mL water droplet was applied.  相似文献   

12.
利用含氟疏水基团的梯度分布,结合草莓形纳米SiO2粒子提供的双重粗糙表面,制备了具有类"荷叶效应"的超疏水涂膜,水接触角达(174.2±2)°,滞后角几乎接近0°.通过原子力显微镜、扫描电镜和水接触角的测试对膜表面形貌及疏水性能进行了表征;探讨了其表面微观结构与表面疏水性能的关系.草莓形复合粒子在膜表面的无规则排列赋予涂膜表面不同等级的粗糙度,使水滴与涂膜表面接触时能够形成高的空气捕捉率,这种微观结构与疏水基团的梯度分布相结合,赋予了含氟硅丙烯酸酯乳液涂膜表面超疏水性能.  相似文献   

13.
A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.  相似文献   

14.
In this study, the authors researched the preparations of superhydrophilic/superhydrophobic surfaces on commercial cup stock polyethylene coated papers by using sparked aluminum nanoparticles deposited on substrates through a sparking process. In this stage, the surface was porous and showed superhydrophilic properties. The samples were then annealed in air at various temperatures and some transformed to superhydrophobicity. It is well known that a suitable roughness in combination with low surface energy has been required to obtain superhydrophobic surfaces. Therefore, it is believed that during annealing process, when polyethylene is diffused from the substrate through the nanoparticle films and the superhydrophobic characteristics were created. The scanning electron microscope images showed that the film surfaces had a fluffy structure for both the as‐deposited and the annealed samples. However, the atomic force microscopy phase images showed completely different surface properties. Moreover, the X‐ray photoelectron spectroscopy spectra showed different surface chemical compositions. The experimental results revealed that the working temperature to produce superhydrophobic surfaces depended on the sparked film thickness. Furthermore, in order to prove the assumption explained above, glass and poly (methyl methacrylate) were also used as substrates.  相似文献   

15.
The paper reports on the preparation of superhydrophobic amorphous silicon oxide nanowires (a-SiONWs) on silicon substrates with a contact angle greater than 150 degrees by means of surface roughness and self-assembly. Nanowires with an average mean diameter in the range 20-150 nm and 15-20 microm in length were obtained by the so-called solid-liquid-solid (SLS) technique. The porous nature and the high roughness of the resulting surfaces were confirmed by AFM imaging. The superhydrophobicity resulted from the combined effects of surface roughness and chemical modification with fluorodecyl trichlorosilane.  相似文献   

16.
In this paper, we report a simple and versatile route for the fabrication of superhydrophobic thermoplastic polyurethane (TPU) films. The approach is based on octadecanamide (ODAA)-directed assembly of nanosilica/TPU/ODAA hybrid with a well-defined sheetlike microstructure. The superhydrophobic hybrid film shows a transparent property, and its water contact angle reaches as high as 163.5° without any further low surface energy treatment. In addition, the superhydrophobic TPU hybrid film with fluorescent properties is achieved by smartly introducing CdTe quantum dots, which will extend potential application of the film to optoelectronic areas. The resulting fluorescent surface produced in this system is stable and has a water contact angle of 172.3°. This assembly method to control surface structures represents an intriguing and valuable route to tune the surface properties of organic-inorganic hybrid films.  相似文献   

17.
Most of the artificial superhydrophobic surfaces that have been fabricated to date are not biodegradable, renewable, or mechanically flexible and are often expensive, which limits their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature, satisfies all the above requirements, but it is not superhydrophobic. Superhydrophobicity on cellulose paper was obtained by domain-selective etching of amorphous portions of the cellulose in an oxygen plasma and subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma-enhanced chemical vapor deposition using pentafluoroethane as a precursor. Variation of plasma treatment yielded two types of superhydrophobicity : "roll-off" (contact angle (CA), 166.7 degrees +/- 0.9 degrees ; CA hysteresis, 3.4 degrees +/- 0.1 degrees ) and "sticky" (CA, 144.8 degrees +/- 5.7 degrees ; CA hysteresis, 79.1 degrees +/- 15.8 degrees ) near superhydrophobicity. The nanometer scale roughness obtained by delineating the internal roughness of each fiber and the micrometer scale roughness which is inherent to a cellulose paper surface are robust when compared to roughened structures created by traditional polymer grafting, nanoparticle deposition, or other artificial means.  相似文献   

18.
We report on the spontaneous formation of superhydrophobic poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/graphene composite microspheres with uniform size via gelation. When the suspension of PVDF-HFP/graphene (0.25 wt. % with respect to PVDF-HFP) in DMF adsorbs water vapor, it changes to a hybrid gel. A dried porous gel is obtained after solvent exchange and freeze drying. Morphology characterization shows that this hybrid gel is composed of PVDF-HFP/graphene microspheres with a diameter of 8-10 μm. In contrast, PVDF-HFP solution gives rise to a cellular microstructure following the same experimental procedures. We further elucidate the formation mechanism on the basis of the characterization by freeze fracture transmission electron microscopy, X-ray diffraction, and differential scanning calorimetry characterizations. Furthermore, contact angle measurements of water on PVDF-HFP/graphene indicates that the hydrophobic nature of PVDF-HFP combined with the micro/nanoscale hierarchical texture creates a superhydrophobic surface. Such superhydrophobic microspheres may have potential applications as water-repellent catalyst-supporting materials.  相似文献   

19.
In this study, we developed a facile method for preparing a superhydrophobic paper surface using a multi-layer deposition of polydiallyldimethylammonium chloride (polyDADMAC) and silica particles, followed by a fluorination surface treatment with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS, CF(3)(CF(2))(5)CH(2)CH(2)Si(OC(2)H(5))(3)). The superhydrophobic wood fiber products prepared in this study have contact angles of water greater than 150 degrees and sliding angles less than 5 degrees. Besides their high water repelling property, the superhydrophobic paper products kept a high tensile strength at high relative humidity condition. The superhydrophobic paper products also showed high resistance to bacterial contamination.  相似文献   

20.
以聚苯乙烯磺酸钠(PSS)掺杂的多孔碳酸钙(CaCO3)微球层为模板,通过热压低密度聚乙烯(LDPE)并结合酸蚀刻的方法制得了具有多层粘联微球结构、而非常见蜂窝状多孔结构的LDPE稳定超疏水表面(接触角152.8±2.5°,滚动角约6°)。元素分析表明,表面粘联微球为纯LDPE而非LDPE包覆的CaCO3。将多孔CaCO3微球稀疏地撒在LDPE表面并加热熔融,发现微球会自发沉降到熔体内部,酸蚀刻后形成了类似莲蓬的表面微结构,即坑内包含小球。结合CaCO3微球生成原理和多孔结构,认为粘联微球结构和莲蓬结构均是由于LDPE熔融大分子自发沉积到多孔CaCO3微球内部,“反模”形成了LDPE微球所致。本发现为多孔CaCO3微球的应用开辟了新方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号