首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对微通道冷却和冲击射流冷却方式的不足,设计了一种新的带冲击射流的柱肋结构的通道热沉,通过数值模拟的方式研究其流动特性和换热性能,模拟工况为加热热流密度为400W/cm~2,进口总压从3.5~12.5 kPa,出口静压为500 Pa,工质为水,热沉的材料为铜,进口温度为300 K。模拟计算结果表明,该结构具有较高的换热效果和良好的表面温度均匀性,在进口总压为3.5 kPa时,表面的最高温度不超过380 K,加热面最高温度和最低温度的差值约为12 K;而当进口总压为12.5 kPa时,最高温度和温差值分别为368 K和约5 K。在进口总压为3.5~12.5 kPa,所研究结构的热沉的流量为3.03~6.32 g/s。  相似文献   

2.
搭建微小通道热沉系统实验台,分别测试了单进单出和两进两出方式的微小通道热沉的流动与传热特性。结果表明,在相同体积流量和微小通道热沉结构的条件下,单进单出热沉的传热系数高于两进两出热沉,而压降低于后者。在相同耗功下,单进单出热沉的传热系数明显高于两进两出热沉。同时,单进单出热沉均温性优于两进两出热沉。故热沉进出口采用单进单出的方式性能更优。  相似文献   

3.
微尺度传热是近几年来发展起来的一种重要传热技术,广泛应用于高集成度的电子器件的冷却。大功率半导体激光器的热沉积是限制其性能发挥和功率进一步提高的瓶颈。本文研究的热沉用于冷却一种以半导体激光条阵列为泵浦的大功率激光器,其10 mm×1 mm半导体激光条表面的热流密度高达400 W/cm2。本文对以无氧铜为材料、以水为冷却介质的微通道热沉的结构尺寸进行了优化设计。结果表明,热沉结构对热阻、泵功、半导体激光条表面温度分布有重要影响,其中微通道进出口宽度对泵功的影响最大。  相似文献   

4.
微射流阵列冷却热沉是利用射流冲击在驻点区能产生很薄的边界层来提高换热效率,合理的布置射流孔,可以极大的提高被冷却表面温度分布的均匀性。本次研究设计的热沉是5层结构的模块式铜微射流阵列冷却热沉(微射流孔直径d=0.15 mm),以氮气和去离子水为工质对阻力特性进行了实验研究,并与微射流阵列冷却热沉的理论计算进行了比较。结果表明,在微射流热沉中,热沉的实验压降值低于计算值,热沉总阻力主要是由局部阻力引起的,占到热沉总阻力的90%。  相似文献   

5.
弯曲微小通道流阻特性的数值模拟   总被引:2,自引:0,他引:2  
用经典的N-S方程对流体在矩形截面、弯曲的微小通道中的流动特性进行了数值研究,发现计算结果与试验结 果存在较大的差异。在对流体流动特性分析的基础上引入了粗糙粘度模型来对经典的N-S方程进行修正,计算结果表明 用粗糙粘度模型计算的结果与试验值吻合较好。  相似文献   

6.
微射流阵列冷却热沉是利用射流冲击在驻点区能产生很薄的边界层来提高换热效率,本次研究设计的热沉是5层结构的模块式铜微射流阵列冷却热沉,以去离子水为工质对传热特性进行了实验研究.结果表明,采用微射流阵列冷却不仅能通过增加驻点数目来强化换热,而且能有效地降低换热表面的温差.热沉的热阻会随着泵功的增加而降低;随着泵功的不断提高,热阻变化趋于平缓.  相似文献   

7.
对用于高功率半导体激光器的叠片式微通道热沉进行方案设计,利用计算流体力学和数值传热学对各种方案进行数值仿真,研究了微通道的特征尺寸和流量等因素对冷却效果和流动阻力特性的影响,一般情况下,减小微通道的特征尺寸和增加冷却水的流量可以降低传热热阻,但增加了流动压力损失;另外对金刚石热扩散片(次热沉)的效果也进行了数值计算,计算结果表明:金刚石热扩散片在该类型问题中降低温度作用明显。  相似文献   

8.
高功率半导体激光器微通道热沉的方案设计   总被引:1,自引:0,他引:1       下载免费PDF全文
 对用于高功率半导体激光器的叠片式微通道热沉进行方案设计,利用计算流体力学和数值传热学对各种方案进行数值仿真,研究了微通道的特征尺寸和流量等因素对冷却效果和流动阻力特性的影响,一般情况下,减小微通道的特征尺寸和增加冷却水的流量可以降低传热热阻,但增加了流动压力损失;另外对金刚石热扩散片(次热沉)的效果也进行了数值计算,计算结果表明:金刚石热扩散片在该类型问题中降低温度作用明显。  相似文献   

9.
相比于单层热沉,双层热沉显著改善芯片温度均匀性.本文建立了双层热沉的三维流固耦合模型,采用参数递进优化法,对硅基水冷双层热沉的几何结构(流道数N、下层流道高度H_(c1)、上层流道高度H_(c2)和肋条宽度W_r)及上下两层通道的流速比t进行了优化研究.结果表明,在泵功0.2 W和热流密度100 W·cm~(-2)时,最佳的双层热沉结构和通道流速比分别为:N_(opt)=70,H_(c1,opt)=200μm,H_(c2,opt)=650μm,W_(r,opt)=71.48μm和t_(opt)=1.85,相比于同样操作条件和几何参数的单层热沉,热阻降低了11.3%,热沉的最大温差从单层热沉的4.6 K降低到0.5 K,显著改善了热沉的温度均匀性.  相似文献   

10.
本文采用FLUENT软件对高热流密度下微小通道的换热效果进行数值模拟,以热源平均温度、热源表面温差和泵功作为判据,对微小通道的结构尺寸进行优化。通过优化结果发现,在文中所讨论的尺寸范围内,最佳水力直径为0.615 mm、深宽比为3.25,拟合出各无量纲参数之间影响传热的关系式,并应用模拟结果对(火积)耗散原理进行验证。  相似文献   

11.
12.
大功率半导体激光器叠层无氧铜微通道热沉   总被引:5,自引:4,他引:5       下载免费PDF全文
刘云  廖新胜  秦丽  王立军 《发光学报》2005,26(1):109-114
建立了叠层无氧铜微通道热沉的散热模型,通过理论计算和近似分析,优化了微通道热沉的结构参数;在t=200μm, ωc=60μm, ωf=100μm,p=2. 02×106 Pa时,可获得最小热沉热阻Rthm =4. 205×10-3 K·cm2 /W。根据优化结果,考虑微通道取向对液压降的影响,设计了一种新型大功率半导体激光器叠阵用五层结构叠层无氧铜微通道热沉,并结合实际工艺制备了无氧铜微通道热沉。在实际工作中,优化结果往往要跟实际工艺相结合,如优化所得的水压降为 2 02×106 Pa,这在实际工艺中较难实现。但在热沉实际工作的水压降条件下,热阻为 4. 982×10-3 K·cm2 /W,它能满足高功率激光器叠阵的需要。  相似文献   

13.
本文研究了流最为50.1~880.5 kgm-2s-1,干度为0.01~0.25范围内微通道热沉内液氮流动沸腾的换热特性.热沉基材为一块长宽厚为50 min×30 mm×4 mm的不锈钢板,钢板上加工有宽1.0 mm,深2.0 mm的9个通道.实验结果表明在定热流密度条件下,热沉表面温度分布很不均匀,这主要是由微通道内...  相似文献   

14.
针对聚光光伏(CPV)电池高热流密度散热问题,本文提出了射流冲击与分形微通道散热相结合的解决方案,对其流动和换热进行了模拟.首先对分形微通道的分形级数进行分析,四级相比三级分形微通道换热系数只增加了4.62%,压降却升高了54.37%;接着对管道截面形状进行优化,对圆形截面,方形渐缩截面和扁管截面内流体的流动进行了模拟,结果表明在换热量相近的情况下,扁管拥有最低的压降;随后对比分叉处倒圆角、倒角和Y形三种布置形状,结果表明Y形布置有效地减少了内部流体的涡旋区,能够在牺牲较少的换热面积的条件下,将压降降低85.51%.最后在相同水力直径条件下研究单个喷嘴、均匀喷嘴阵列、非均匀喷嘴阵列射流冲击分形微通道的换热性能,模拟结果表明,非均匀喷嘴阵列分形微通道拥有最佳的换热性能,且压降降低了25.99%.  相似文献   

15.
本文提出使用机器学习方法快速准确地预测歧管–二次流混合结构微通道热沉的泵功率和总热阻。将混合结构微通道热沉的结构特征参数进行了无量纲化,利用计算流体动力学的方法获得数据集。测试了不同机器学习算法在混合结构热沉性能预测任务上的表现。结果表明在数据集有限的情况下,随机森林算法能准确地学习到无量纲结构参数与泵功率和总热阻之间的映射关系。本文研究结果将有助于微通道热沉的优化设计。  相似文献   

16.
 采用二阶正格式方法对非定常欠膨胀射流进行了数值模拟。将二维守恒方程的正格式方法推广到轴对称Euler方程组的求解,并对不同马赫数下的燃气射流进行了数值计算。计算结果表明,该方法能够较好地捕捉到包含膨胀波、入射激波、反射激波、马赫盘、射流边界以及三波点等复杂射流流场的波系结构,与实验照片反映的流动特征以及已有的数值结果相吻合。表明该方法对间断解具有较强的捕捉能力,在激波阵面上不会出现数值振荡。  相似文献   

17.
热沉是空间环境模拟器中的重要组成部分。文中就大型热沉研制过程中有关热沉理论计算、材料选择、热沉结构等方面作了介绍。  相似文献   

18.
19.
本文运用数值计算的方法对具有初始横流的阵列射流在不同的排列方式、冲击间距和横流/射流质量流量比下 的流动换热进行了三维数值研究,并采用热色液晶测试技术对阵列射流冲击的冷却表面温度分布进行了试验研究。获得了 每一股射流的冲击冷却局部对流换热系数分布的特征,研究结果表明本文的计算结果与实验特征是基本吻合的。  相似文献   

20.
高密度、 小体积和高集成的电子元器件散热困难, 易造成过早失效, 采用微通道换热器可以实现小体积内高热流的散热, 但流动阻力很大. 为了保证传热效果, 降低流动阻力, 本文提出了一种新型的微通道结构并对其流动与传热特性进行了数值模拟. 首先研究了微通道形状和结构, 模拟结果表明: 进出口截面宽高比为0.8 的矩形微通道的换热效果最好; 并在此基础上提出一种康托尔分型凹槽结构, 研究了有无康托尔分形以及不同分形级数对流动与传热性能的影响, 综合对比发现: 第二级康托尔分形模型 N2 既能保证热阻显著降低, 又能相比阵列结构降低压降, 具有明显的换热优势; 最后对这种康托尔分形结构的凹槽形状, 尺寸及不同方向上的分形进行研究, 结果表明梯形凹槽的下上表面长度比b/a 为0.6 、 流动方向分形比fx 为1 .25 和通道高度方向分形比fy 为1 .5 时换热流动性能最佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号