首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electromigration-induced failure of Sn95/Sb5 flip chip solder bumps was investigated. The failure of the joints was found at the cathode/chip side after current stressing with a density of 1×104 A/cm2 at 150°C for 13 sec. The growth of intermetallic compounds (IMCs) was observed at the anode side after current stressing. Voids were found near the current crowding area in the cathode/chip side, and the (Cu,Ni)6Sn5 IMC at the cathode/chip end was transformed into the Sn phase. The failure mechanism for Sn95/Sb5 flip chip solder joint is proposed in this paper.  相似文献   

2.
Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1−x,Agx)6Sn5, (Cu1−y,Agy)3Sn, and (Ag1−z,Cuz)3Sn were observed. In addition to conventional I–V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.  相似文献   

3.
Flip-chip technology with the layout of ball grid array has been widely used in today’s microelectronics industry. The elemental distribution in the edge of the solder bump is crucial for its correlation with the bump strength. In this study, Ni/Cu under-bump metallization (UBM) was used to evaluate the intermetallic compound (IMC) formation in the edge of the solder bump between the UBM and eutectic Sn-Pb solder in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. During reflows, layered-type (Ni1−xCux)3Sn4 and island-like (Cu1−yNiy)6Sn5 IMCs formed in the interface between the solder and UMB, while only the (Cu1−yNiy)6Sn5 IMC was observed in the sideway of the Ni/Cu UBM. After high-temperature storage (HTS) at 150°C for 1,000 h, both (Cu1−yNiy)6Sn5 and (Cu1−zNiz)3Sn were found in the sideway of the Ni/Cu UBM. Two other IMCs, (Ni1−xCux)3Sn4 and (Cu1−yNiy)6Sn5, formed in the interface between the solder and UBM. The growth of the (Cu1−yNiy)6Sn5 IMC was relatively fast during HTS.  相似文献   

4.
In this work we studied the initial microstructure and microstructural evolution of eutectic Au-Sn solder bumps on Cu/electroless Ni/Au. The solder bumps were 150–160 m in diameter and 45–50 m tall, reflowed on Cu/electroless Ni/Au, and then aged at 200°C for up to 365 days. In addition, Au-Ni-Sn-alloys were made and analyzed to help identify the phases that appear at the interface during aging. The detailed interfacial microstructure was observed using a transmission electron microscope (TEM). The results show that the introduction of Au from the substrate produces large islands of-phase in the bulk microstructure during reflow. Two Au-Ni-Sn compounds are formed at the solder/substrate interface and grow slowly during aging. The maximum solubility of Ni in the—phase was measured to be about 1 at.% at 200°C, while Ni in the-phase is more than 20 at.%. The electroless Ni layer is made of several sublayers with slightly different compositions and microstructures. There is, in addition, an amorphous interaction layer at the solder/electroless Ni interface.  相似文献   

5.
This paper investigates the electromigration-induced failures of SnAg3.8Cu0.7 flip-chip solder joints. An under-bump metallization (UBM) of a Ti/Cr-Cu/Cu trilayer was deposited on the chip side, and a Cu/Ni(P)/Au pad was deposited on the BT board side. Electromigration damages were observed in the bumps under a current density of 2×104 A/cm2 and 1×104 A/cm2 at 100°C and 150°C. The failures were found to be at the cathode/chip side, and the current crowding effect played an important role in the failures. Copper atoms were found to move in the direction of the electron flow to form intermetallic compounds (IMCs) at the interface of solder and pad metallization as a result of current stressing.  相似文献   

6.
Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015–1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.  相似文献   

7.
Flip-chip interconnection technology plays a key role in today’s electronics packaging. Understanding the interfacial reactions between the solder and under-bump metallization (UBM) is, thus, essential. In this study, different thicknesses of electroplated Ni were used to evaluate the phase transformation between Ni/Cu under-bump metallurgy and eutectic Sn-Pb solder in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure for the flip-chip technology. Interfacial reaction products varied with reflow times. After the first reflow, layered (Ni1−x,Cux)3Sn4 was found between solder and Ni. However, there were two interfacial reaction products formed between solders and the UBM after three or more times reflow. The layered (Ni1−x,Cux)3Sn4 was next to the Ni/Cu UBM. The islandlike (Cu1−y,Niy)6Sn5 intermetallic compound (IMC) could be related to the Ni thickness and reflow times. In addition, the influence of Cu contents on phase transformation during reflow was also studied.  相似文献   

8.
Several international legislations recently banned the use of Pb because of environmental concerns. The eutectic Sn-Ag solder is one of the promising candidates to replace the conventional Sn-Pb solder primarily because of its excellent mechanical properties. In this study, interfacial reaction of the eutectic Sn-Ag and Sn-Pb solders with Ni/Cu under-bump metallization (UBM) was investigated with a joint assembly of solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. After reflows, only one (Ni,Cu)3Sn4 intermetallic compound (IMC) with faceted and particlelike grain feature was found between the solder and Ni. The thickness and grain size of the IMC increased with reflow times. Another (Cu,Ni)6Sn5 IMC with a rod-type grain formed on (Ni,Cu)3Sn4 in the interface between the Sn-Pb solder and the Ni/Cu UBM after more than three reflow times. The thickness of the (Ni,Cu)3Sn4 layer formed in the Sn-Pb system remained almost identical despite the numbers of reflow; however, the amounts of (Cu,Ni)6Sn5 IMC increased with reflow times. Correlations between the IMC morphologies, Cu diffusion behavior, and IMC transformation in these two solder systems will be investigated with respect to the microstructural evolution between the solders and the Ni/Cu UBM. The morphologies and grain-size distributions of the (Ni,Cu)3Sn4 IMC formed in the initial stage of reflow are crucial for the subsequent phase transformation of the other IMC.  相似文献   

9.
Nickel-based under-bump metallization (UBM) has been widely used in flip-chip technology (FCT) because of its slow reaction rate with Sn. In this study, solder joints after reflows were employed to investigate the mechanism of interfacial reaction between the Ni/Cu UBM and eutectic Sn-Pb solder. After deliberate quantitative analysis with an electron probe microanalyzer (EPMA), the effect of Cu content in solders near the interface of the solder/intermetallic compound (IMC) on the interfacial reaction could be probed. After one reflow, only one layered (Ni1−x,Cux)3Sn4 with homogeneous composition was found between the solder bump and UBM. However, after multiple reflows, another type of IMC, (Cu1−y,Niy)6Sn5, formed between the solder and (Ni1−x,Cux)3Sn4. It was observed that if the concentration of Cu in the solders near the solder/IMC interface was higher than 0.6 wt.%, the (Ni1−x,Cux)3Sn4 IMC would transform into the (Cu1−y,Niy)6Sn5 IMC. The Cu contents in (Ni1−x,Cux)3Sn4 were altered and not uniformly distributed anymore. With the aid of microstructure evolution, quantitative analysis, elemental distribution by x-ray color mapping, and related phase equilibrium of Sn-Ni-Cu, the reaction mechanism of interfacial phase transformation between the Sn-Pb solder and Ni/Cu UBM was proposed.  相似文献   

10.
The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1−x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1−x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1−y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1−y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016−1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.  相似文献   

11.
This paper reports the formation of intermetallic compounds in Au/Ni/Cu/Ti under-bump-metallization (UBM) structure reacted with Ag-Sn eutectic solder. In this study, UBM is prepared by evaporating Au(500 Å)/Ni(1000 Å)/Cu(7500 Å) /Ti (700 Å) thin films on top of Si substrates. It is then reacted with Ag-Sn eutectic solder at 260 C for various times to induce different stages of the interfacial reaction. Microstructural examination of the interface, using both chemical and crystallographic analysis, indicates that two types of intermetallic compounds are formed during the interfacial reaction. The first phase, formed at the intial stage of the reaction, is predominantly Ni3Sn4. At longer times the Ni3Sn4 phase transforms into (Cu, Ni)6Sn6, probably induced by interdiffusion of Cu and Ni. At this stage, the underlying Cu layer also reacts with Sn and forms the same phase, (Cu,Ni)6Sn5. As a result, the fully reacted interface is found to consist of two intermetallic layers with the same phase but different morphologies.  相似文献   

12.
研究了150℃时效0,200,500h对Sn3.0Cu0.15Ni/Cu界面组织结构的影响.结果表明:界面金属间化合物层由Cu6Sn5层和Cu3Sn层组成,质量分数为0.15%的Ni的加入会使IMC层最初变厚,但在时效过程中,热稳定性强的界面化合物(Cu,Ni)6Sn5的生成,会抑制Cu3Sn化合物层的生长;同时Ni的加入会降低Cu6Sn5颗粒的长大速度,并且随着时效时间的延长,Cu6Sn5颗粒的形貌呈多面体结构.  相似文献   

13.
The evolution of intermetallics at and near SnAgCu/Cu and SnAgCu/Ni interfaces was examined, and compared to the behavior, near PbSn/metal and Sn/metal interfaces. Two different solder compositions were considered, Sn93.6Ag4.7Cu1.7 and Sn95.5Ag3.5Cu1.0 (Sn91.8Ag5.1 Cu3.1 and Sn94.35Ag3.8Cu1.85 in atomic percent). In both cases, phase formation and growth at interfaces with Cu were very similar to those commonly observed for eutectic SnPb solder. However, the evolution of intermetallics at SnAgCu/Ni interfaces proved much more complex. The presence of the Cu in the solder dramatically altered the phase selectivity at the solder/Ni interface and affected the growth kinetics of intermetallics. As long as sufficient Cu was available, it would combine with Ni and Sn to form (Cu,Ni)6)Sn5 which grew instead of the Ni3Sn4 usually observed in PbSn/Ni and Sn/Ni diffusion couples. This growing phase would, however, eventually consume essentially all of the available Cu in the solder. Because the mechanical properties of Sn-Ag-Cu alloys, depend upon the Cu content, this consumption can be expected to alter the mechanical properties of these Pb-free solderjoints. After depletion of the Cu from the solder, further annealing then gradually transformed the (Cu,Ni)6Sn5 phase into a (Ni,Cu)3Sn4 phase.  相似文献   

14.
In this study, we used microstructure evolution and electron microprobe analysis (EPMA) to investigate the interfacial reactions in Sn-Zn and Sn-Zn-Al solder balls with Au/Ni surface finish ball-grid-array (BGA) bond pad over a period of isothermal aging at 150°C. During reflow, Au dissolved into the solder balls and reacted with Zn to form γ-Au3Zn7 and γ2-AuZn3. As aging progressed, γ and γ2 transformed into γ3-AuZn4. Finally, Zn precipitated out next to γ3-AuZn4. The Zn reacted with the Ni layer to form Ni5Zn21. A thin layer (Al, Au, Zn) intermetallic compound (IMC) formed at the interface of the Sn-Zn-Al solder balls, inhibiting the reaction of Ni with Zn. Even after 50 days of aging, no Ni5Zn21 was observed. Instead, fine (Al, Au, Zn) particles similar to Al2 (Au, Zn) in composition formed and remained stable in the solder. The lower ball shear strength corresponded with the brittle fracture morphology in Sn-Zn-Al solder ball samples.  相似文献   

15.
The cross-interaction of the under-bump metallurgy (UBM)/solder interface and the solder/surface-finish interface in flip-chip solder joints was investigated. In this study, the UBM on the chip side was a single layer of Cu (8.5 μm), and the surface finish on the substrate side was a 0.2-μm Au layer over 5-μm Ni. It was shown that, after two reflows, the Ni layer of the surface finish had been covered with (Cu1−xNix)6Sn5. This shows that the effect of cross-interaction of the two interfaces is important even during the reflow stage. During subsequent solid-state aging at 115°C, 135°C, and 155°C, the formation of (Cu1−xNix)6Sn5 over the Ni layer was found to have the effect of reducing the Ni consumption rate. At the same time, the Cu consumption rate of the UBM was accelerated. The results of this study show that the selection of the UBM and the surface finish has to be considered together because the cross-interaction of the two interfaces plays an important role.  相似文献   

16.
The morphological and compositional evolutions of intermetallic compounds (IMCs) formed at three Pb-free solder/electroless Ni-P interface were investigated with respect to the solder compositions and reflow times. The three Pb-free solder alloys were Sn3.5Ag, Sn3.5Ag0.75Cu, and Sn3Ag6Bi2In (in wt.%). After reflow reaction, three distinctive layers, Ni3Sn4 (or Ni-Cu-Sn for Sn3.5Ag0.75Cu solder), NiSnP, and Ni3P, were formed on the electroless Ni-P layer in all the solder alloys. For the Sn3.5Ag0.75Cu solder, with increasing reflow time, the interfacial intermetallics switched from (Cu,Ni)6Sn5 to (Cu,Ni)6Sn5+(Ni,Cu)3Sn4, and then to (Ni,Cu)3Sn4 IMCs. The degree of IMC spalling for the Sn3.5Ag0.75Cu solder joint was more than that of other solders. In the cases of the Sn3.5Ag and Sn3Ag6Bi2In solder joints, the growth rate of the Ni3P layer was similar because these two type solder joints had a similar interfacial reaction. On the other hand, for the Sn3.5Ag0.75Cu solder, the thickness of the Ni3P and Ni-Sn-P layers depended on the degree of IMC spalling. Also, the shear strength showed various characteristics depending on the solder alloys and reflow times. The fractures mainly occurred at the interfaces of Ni3Sn4/Ni-Sn-P and solder/Ni3Sn4.  相似文献   

17.
The Ni-based under-bump metallurgies (UBMs) are of interest because they have a slower reaction rate with Sn-rich solders compared to Cu-based UBMs. In this study, several UBM schemes using Ni as the diffusion barrier are investigated. Joints of Sn-58Bi/Au/electroless nickel (EN)/Cu/Al2O3 and Sn-58Bi/Au/electroplated nickel/Cu/Al2O3 were aged at 110°C and 130°C for 1–25 days to study the interfacial reaction and microstructural evolution. The Sn-Bi solder reacts with the Ni-based multimetallization and forms the ternary Sn-Ni-Bi intermetallic compound (IMC) during aging at 110°C. Compositions of ternary IMC were (78–80)at.%Sn-(12–16)at.%Ni-(5–8)at.%Bi in joints of Sn-58Bi/Au/Ni-5.5wt.%P/Cu, Sn-58Bi/Au/Ni-12wt.%P/Cu, and Sn-58Bi/Au/Ni/Cu. Elevated aging at 130°C accelerates the IMC growth rate and results in the formation of (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5 adjacent to the ternary Sn-Ni-Bi IMC for the Sn-58Bi/Au/Ni-12wt.%P/Cu and Sn-58Bi/Au/Ni/Cu joints, respectively. The Cu content in the (Cu,Ni)6Sn5 IMC is six times that in (Ni,Cu)3Sn4. Electroplated Ni fails to prevent Cu diffusion toward the Ni/solder interface as compared to EN-based joints. Cracks are observed in the Sn-58Bi/Au/Ni-5.5wt.%P/Cu/Al2O3 joint aged at 130°C for 25 days. It is more favorable to employ Ni-12wt.%P for the Sn-58Bi/Au/EN/Cu joint. Electroless nickel, with the higher P content of 12 wt.%, is a more effective diffusion barrier during aging. In addition, P enrichment occurs near the interface of the EN/solder, and the degree of P enrichment is enhanced with aging time. The Au(Sn,Bi)4, with pyramidal and cubic shape, is observed in the Sn-58Bi/Au/Ni/Cu/Al2O3 joint.  相似文献   

18.
Electroless Ni-P/Cu under-bump metallization (UBM) is widely used in electronics packaging. The Sn3.0Ag0.5Cu lead-free composite solder pastes were produced by a mechanical alloying (MA) process doped with Cu6Sn5 nanoparticles. In this study, the detailed interfacial reaction of Sn3.0Ag0.5Cu composite solders with EN(P)/Cu UBM was investigated after reflow. A field-emission scanning electron microscope (FESEM) was employed to analyze the interfacial morphology and microstructure evolution. The intermetallic compounds (IMCs) formed at the interface between the Sn3.0Ag0.5Cu composite solders and EN(P)/Cu UBM after one and three reflows were mainly (Ni1−x,Cux)3Sn4 and (Cu1−y,Niy)6Sn5. However, only (Ni1−x,Cux)3Sn4 IMC was observed after five reflows. The elemental distribution near the interfacial region was evaluated by an electron probe microanalyzer (EPMA) as well as field-emission electron probe microanalyzer (FE-EPMA). Based on the observation and characterization by FESEM, a EPMA, and an FE-EPMA, the reaction mechanism of interfacial phase transformation between Sn3.0Ag0.5Cu composite solders and EN(P)/Cu UBM after various reflow cycles was discussed and proposed.  相似文献   

19.
The effects of various elements of substrate metallization, namely, Au, Ni, and P, on the solder/under-bump metallization (UBM), (Al/Ni(V)/Cu) interfacial reactions in flip-chip packages during multiple reflow processes were systematically investigated. It was found that Au and P had negligible effects on the liquid-solid interfacial reactions. However, Ni in the substrate metallization greatly accelerated the interfacial reactions at chip side and degraded the thermal stability of the UBM through formation of a (Cu,Ni)6Sn5 ternary compound at the solder/UBM interface. This phenomenon can be explained in terms of enhanced grain-boundary grooving on (Cu,Ni)6Sn5 in the molten solder during the reflow process. This could eventually cause the rapid spalling of an intermetallic compound (IMC) from the solder/UBM interface and early failure of the packages. Our results showed that formation of multicomponent intermetallics, such as (Cu,Ni)6Sn5 or (Ni,Cu)3Sn4, at the solder/UBM interface is detrimental to the solder-joint reliability.  相似文献   

20.
Fundamental understanding of the relationship among process, microstructure, and mechanical properties is essential to solder alloy design, soldering process development, and joint reliability prediction and optimization. This research focused on the process-structure-property relationship in eutectic Sn-Ag/Cu solder joints. As a Pb-free alternative, eutectic Sn-Ag solder offers enhanced mechanical properties, good wettability on Cu and Cu alloys, and the potential for a broader range of application compared to eutectic Sn-Pb solder. The relationship between soldering process parameters (soldering temperature, reflow time, and cooling rate) and joint microstructure was studied systemati-cally. Microhardness, tensile shear strength, and shear creep strength were measured and the relationship between the joint microstructures and mechani-cal properties was determined. Based on these results, low soldering tempera-tures, fast cooling rates, and short reflow times are suggested for producing joints with the best shear strength, ductility, and creep resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号