首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用升流式厌氧流化床反应器,研究高浓度厌氧氨氧化工艺的脱氮效能。接种普通好氧活性污泥,以低浓度配水(NH_4~+-N 60 mg/L,NO_2~--N 50 mg/L)驯化厌氧氨氧化菌,经150 d富集,填料表面形成红色生物膜,NH_4~+-N和NO_2~--N同步去除率高于80%,反应器成功启动;采用低基质进水(NH_4~+-N 60~300 mg/L,NO_2~--N 100~355 mg/L),随着进水容积负荷的增加,总氮去除负荷从0.39 kg/(m~3·d)提升至1.29 kg/(m~3·d);采用高基质进水(NH_4~+-N 390 mg/L,NO_2~--N 400 mg/L)时,总氮去除负荷降至1.08 kg/(m~3·d),150%回流能有效缓解基质对厌氧氨氧化菌的活性抑制,反应器总氮去除负荷逐渐恢复并升高至1.76 kg/(m~3·d),脱氮效能提高63%。  相似文献   

2.
为了研究如何获得厌氧氨氧化的快速启动工艺,采用SBR作为富集厌氧氨氧化菌的反应器,接种絮状硝化污泥,考察其厌氧氨氧化快速启动性能。以氯化铵和亚硝酸盐为进水底物,通过逐步提高进水NH_4~+-N、NO_2~--N的浓度,成功实现了厌氧氨氧化的启动,此方法可快速培养出具有厌氧氨氧化活性的污泥,整过驯化过程中,NH_4~+-N、NO_2~--N的去除率均维持在90%以上,总氮去除负荷最大可达0. 52 kg/(m~3·d),厌氧氨氧化菌活性高。  相似文献   

3.
采用提高进水基质的方式启动复合型UASB厌氧氨氧化反应器,研究启动过程中反应器的脱氮效果和运行状况,并通过污泥形态变化了解厌氧氨氧化菌富集情况。结果表明经过286 d的运行,NH_4~+-N、NO_2~--N和总氮(TN)去除率维持在90%以上,总氮去除负荷由0.129 kg/(m~3·d)提升至0.520 kg/(m~3·d),反应器启动成功。化学计量关系和pH变化均可作为判断反应器运行状况的指标,反应器启动成功时的ΔNH_4~+-N:ΔNO_2--N:ΔNO_3--N为1:1.24:0.14,出水pH在8.3~8.5之间,ΔpH维持在0.9左右。当反应器中TN质量浓度为186 mg/L时,游离氨对厌氧氨氧化的抑制浓度为3.1~20.4 mg/L。启动过程中,黑色颗粒污泥先解体,第256天污泥颜色转变为红褐色,再运行30天后反应器中出现大量颗粒污泥。复合型UASB厌氧氨氧化反应器能加速污泥颗粒化,同时有效减轻污泥上浮问题。  相似文献   

4.
采用序批式生物膜反应器(SBBR),以混合污泥作为接种污泥,研究了反应器启动过程中菌群演替规律。结果表明,通过逐步提高进水NH4+-N和NO2--N含量的方式将SBBR的N容积负荷由0.10 g/(L·d)提升至1.164 g/(L·d),经过144 d成功启动厌氧氨氧化SBBR,TN去除率达93.92%,厌氧氨氧化活性为5.86 mg/(g·h)。在反应器启动过程中,厌氧氨氧化菌的丰度不断升高,其它非功能菌的丰度逐渐降低。稳定运行期,浮霉菌门在活性污泥和生物膜上的丰度有显著的差异,前者为8.83%,后者为24.21%。3种检出的厌氧氨氧化菌属在活性污泥和生物膜上的差异也十分明显,Candidatus Jettenia、Candidatus Brocadia和Candidatus Kuenenia在活性污泥中的丰度分别为2.89%、2.29%和0.65%,而在生物膜的丰度分别为10.04%、5.93%、2.22%。  相似文献   

5.
为解决CRI滤池因碳源缺乏导致的TN去除效率低的问题,考察了接种好氧硝化污泥后CRI滤池启动厌氧氨氧化的可行性及启动性能。结果表明,经过适应期(1~20 d)、活性迟滞期(21~49 d)、活性提高期(50~132 d)和活性稳定期(133~137 d)后可成功启动厌氧氨氧化,活性稳定期NH3-N、 NO2--N、 TN平均去除率分别可达到94.7%、 94.2%、 87.0%。运行至137 d时,生物膜量(VS)、胞外多聚物(EPS)、比厌氧氨氧化活性(SAA)、血红素(Heme)分别达到92.82 mg/g[滤料]、 115.82 mg/g[VS]、 79.68 mg[N]/(g[VS]·d)、 0.93μmol/g[VS], CRI滤池已具有良好的厌氧氨氧化活性。16S rRNA高通量测序结果表明,在厌氧氨氧化活性稳定期,菌群丰度和多样性均随滤料深度的增加而增大,厌氧氨氧化菌属Candidatus Brocadia的相对丰度为1.09%~5.27%,在检出的菌属中占绝对优势,为CRI滤池内发生厌氧氨氧化脱氮提供了基础。  相似文献   

6.
以实验室高效反硝化反应器中的反硝化污泥作为接种污泥,启动自养型六偏磷酸钠-Fe2+脱氮反应器,试验采用模拟废水通过88 d的不间断运行,研究了铁盐脱氮工艺的脱氮效能及其微生物学特性。结果表明,当反应器硝态氮容积负荷为0.42 kg/(m3·d)时,最高稳定氮去除负荷为0.41 kg/(m3·d);当Fe2+容积负荷为4.92 kg/(m3·d)时,最大铁去除负荷为2.77 kg/(m3·d)。反应器稳定运行时硝态氮、Fe2+的去除率分别达94.6%、52.6%,最佳效能可维持28 d。反应器运行到第82天时,颗粒污泥由黄色变为灰褐色,颗粒解体,污泥比活性逐渐升高,比反硝化活性由0.71 mg[N]/(g[VSS]·h)升高到2.3 mg[N]/(g[VSS]·h),同比上升224%;比铁氧化活性由7.3 mg[Fe]/(g[VSS]·h)升高到15 mg[Fe]/(g[VSS]·h),同比上升105%。六偏磷酸钠-Fe2+<...  相似文献   

7.
为了加快厌氧氨氧化颗粒污泥形成,研究了氮负荷对厌氧氨氧化菌颗粒污泥形成的影响,通过逐步改变进水基质含量和降低HRT的方式,考察不同氮负荷及冲击条件下厌氧氨氧化颗粒污泥可颗粒化程度、沉降速度、MLSS含量、ρ(MLVSS)/ρ(MLSS)以及氮去除率形成的影响。结果表明,提高进水基质含量对厌氧氨氧化颗粒污泥形成具有双重影响,当进水NH+-4-N、NO2-N的质量浓度分别低于170、187 mg/L时,有利于厌氧氨氧化颗粒污泥形成,高于此值时SGR、MLSS含量、ρ(MLVSS)/ρ(MLSS)、活性下降;缩短HRT能够缓解过高基质浓度对厌氧氨氧化菌的抑制作用,提高反应器上升流速有利于形成优质厌氧氨氧化颗粒污泥,当HRT为20 h时,428.4 g/(m3·d)为适宜的氮负荷。在反应器条件变化时,相比于絮状污泥,厌氧氨氧化颗粒污泥具有较强的抗负荷冲击能力。  相似文献   

8.
以实验室培养的Candidatus Jettenia属厌氧氨氧化颗粒污泥为种泥,通过批次与连续试验,考察了盐度对Anammox脱氮效能的影响。结果表明以Candidatus Jettenia为优势菌属的Anammox污泥对盐度的增加表现敏感。在连续试验中,UAFB反应器经55 d无盐环境的启动,总氮去除速率达到1.15 kg/(m~3·d),当盐度为5、7.5 g/L时,反应器脱氮效率分别下降了20%、60%,但仍能表现出显著的厌氧氨氧化效能。批次试验中,5、7.5、10 g/L盐度下,Anammox污泥活性分别下降了25%、55%、67%;盐度15 g/L时,Anammox菌失去活性。  相似文献   

9.
厌氧氨氧化颗粒污泥的快速形成   总被引:4,自引:0,他引:4  
以好氧硝化颗粒污泥与厌氧氨氧化生物膜作为接种污泥,在缺氧条件下利用EGSB反应器培养厌氧氨氧化颗粒污泥。根据反应器内污泥性状以及运行效果,随时调整反应器的进水基质浓度以及上升流速等关键控制因素,加快厌氧氨氧化颗粒污泥的快速形成。同时考察系统的脱氮效能、粒径分布、厌氧氨氧化颗粒污泥表面形态以及内部结构与微生物分布情况。反应器运行80 d后,培养出成熟的厌氧氨氧化颗粒污泥,平均粒径为0.556 mm;89 d时,总氮去除负荷达4.758 kg N·m-3·d-1。FISH表明颗粒污泥中厌氧氨氧化菌为优势菌种,同时SEM与TEM观察表明颗粒污泥是由多个小颗粒聚集形成,而且形状不规则,内部结构排列紧密。  相似文献   

10.
部分短程硝化和厌氧氨氧化技术的研究主要集中在高氨氮废水方面,对低氨氮浓度生活污水的研究相对较少。使经过除碳和部分短程硝化后的实际生活污水进入厌氧氨氧化UASB反应器,探究生活污水对成熟厌氧氨氧化颗粒污泥的影响。结果表明,当厌氧氨氧化UASB反应器的进水由配水变为生活污水后,反应器出水中氨氮浓度可降到5 mg·L~(-1)以下,亚硝态氮浓度可降到1 mg·L~(-1)以下,但是硝态氮的生成量高于理论值,可能是溶解氧被带入UASB反应器使硝化作用增强。UASB反应器内厌氧氨氧化污泥颜色由红色变为红黑色,T-EPS含量减少,PN/PS由1.13增大到3.66,沉降性变好,反应器内污泥中厌氧氨氧化菌Candidatus Brocadia所占比例由17.7%减少为14.4%,系统内AOB和NOB菌的含量增加,如果能够降低进入UASB反应器的溶解氧,有可能会减少出水硝氮,达到较好总氮去除效果。  相似文献   

11.
为实现高负荷冲击下厌氧氨氧化反应器的快速启动,通过调节进水负荷,设置出水回流,启动以海绵为载体的上流式厌氧污泥床反应器。实验前期进水氮负荷为4 kgN/(m3·d),启动27 d后添加出水回流,氨氮去除率达80%,总氮去除率达51%。第37天时提高氮负荷至6 kgN/(m3·d),41 d系统达到稳定运行,总氮去除率可达74%。在高流速冲击下利用海绵作为填充物,水力冲击使微生物分泌大量胞外聚合物,并黏附在多孔的海绵体上,形成稳定的生物载体。高通量测序结果表明,Candidatus Kuenenia为主要的厌氧氨氧化菌,其丰度为8.1%。在高负荷冲击下通过海绵填充和设置出水回流可以快速启动厌氧氨氧化反应器,为高负荷下厌氧氨氧化反应器的启动提供了新思路。  相似文献   

12.
研究了同步亚硝化、厌氧氨氧化和反硝化(SNAD)-生物移动床(MBBR)工艺对煤气化废水脱氮的处理效果。结果表明,通过控制低DO含量和低污泥停留时间(SRT)的方法防止了好氧反应器中硝化菌的积累,为后续SNAD反应器提供了合适的进水。煤气化废水经好氧反应器去除COD后进入SNAD MBBR进行脱氮,控制SNAD反应器温度为30~33℃,DO的质量浓度为0.5~0.8 mg/L,p H为7.5~7.7,HRT为24 h。TN去除率达到90.7%,出水TN、NH_4~+-N的质量浓度分别低于20、5 mg/L,COD去除率达到89.6%,出水COD低于60 mg/L。运行25 d后,SNAD反应器中厌氧氨氧化菌的种类由接种时的Candidatus Brocadia变为Candidatus Kuenenia。  相似文献   

13.
采用侧流富集/主流强化方式,研究了全程自养脱氮工艺(CANON)用于常温(25℃)、低氨氮(约60 mg NH+4-N·L-1)主流线生物脱氮的可行性。结果表明,通过7 d更换主流反应器40%污泥混合液方式可实现维持主流反应器总氮去除负荷(TNRR)在80 g N·m-3·d-1左右,总氮去除率(TNRE)在70%左右,主流反应器厌氧氨氧化比活性持续升高。16S r DNA高通量测序结果表明,主流和侧流CANON系统中起亚硝化作用的氨氧化细菌(AOB)主要是Nitrosomonas属,进行Anammox反应的厌氧氨氧化菌(An AOB)主要是Candidatus Jettenia属,60 d的运行过程中主流反应器Nitrospira属的亚硝酸盐氧化菌(NOB)丰度始终小于1%。可见在本实验条件下,采用7 d为频率主流和侧流换泥方式,能够保证主流反应器中Anammox活性,确保主流CANON反应器的脱氮性能。  相似文献   

14.
为探究膜生物反应器(MBR)进行厌氧氨氧化的可行性及性能,通过逐渐提高进水NH_4~+-N、NO_2~--N的含量和降低HRT,成功启动了自流出水式MBR厌氧氨氧化过程,分析了反应器脱氮效果和厌氧氨氧化污泥特性,并采用扫描电镜和X射线光电子能谱中空纤维膜表面进行分析。结果表明,经过60 d的启动,NH_4~+-N、NO_2~--N和TN的去除率分别达到96.22%、99.91%和81.66%,TN去除负荷最大可达到330 g/(m~3·d)。在启动过程中,污泥颜色逐渐变为红褐色;中空纤维膜表面厌氧氨氧化菌呈不规则的椭球状,结构紧凑;MBR运行稳定阶段末期中空纤维膜表面C、N和Ca特征峰增多,是膜污染化学组分的主要构成元素。  相似文献   

15.
考察了低盐度条件下启动厌氧氨氧化反应器及其处理高氮高盐废水的可行性。结果表明,在NaCl为3.0 g/L的低盐度、氮负荷为130 mg/(L·d)的条件下采用普通活性污泥作为接种污泥,可在165 d内成功启动UASB厌氧氨氧化反应器,对TN、NH4+-N、NO2--N的平均去除率分别达到80.0%、98.8%、90.0%,NH4+-N、NO2--N去除量与NO3--N生成量之比为1∶(1.15±0.08)∶(0.20±0.02),出水pH稳定在8.42左右,污泥呈棕褐色颗粒状,存在部分浅红色颗粒污泥。将总氮容积负荷和盐度(NaCl)逐步提高到258 mg/(L·d)和12.0 g/L,反应器脱氮效率保持高效、稳定。在低盐度条件下启动厌氧氨氧化反应器之后,通过适当的氮负荷和盐度提升方式,可以处理高氮高盐废水。  相似文献   

16.
采用厌氧折流板反应器(ABR)接种好氧活性污泥在常温((25±1)℃)下启动运行厌氧氨氧化工艺。结果表明,启动阶段,控制进水NH_4~+-N和NO_2~--N均为50 mg/L,仅运行57 d,NH_4~+-N、NO_2~--N和TN去除率就分别达到93.82%、99.84%和88.22%,表明成功实现常温启动。负荷提升阶段,73~87 d,进水NH_4~+-N和NO_2~--N的质量浓度以每次50 mg/L的增幅逐步从50 mg/L提升到200 mg/L,每次负荷提升,出水NH_4~+-N和NO_2~--N含量小幅波动再趋向于稳定,表明ABR有一定的耐负荷冲击能力。运行93 d,最大TN负荷率和TN去除速率分别为0.40 kg/(m~3·d)和0.33kg/(m~3·d),表现较好的脱氮性能。可为厌氧氨氧化工艺在实际工程中的应用提供理论依据。  相似文献   

17.
在完全混合流反应器中接种亚硝化颗粒污泥,通过分阶段使用连续流和序批式运行方式,成功启动了全自养生物脱氮(CANON)工艺,并对反应器性能、污泥形态与活性、微生物菌群结构的变化规律进行了深入分析。结果表明,基于初始连续流运行获得的良好基质比,序批式阶段的高氨氮负荷和高溶解氧条件可有效促进污泥浓度与活性的增长,使得反应器在最终连续流状态下的总氮去除负荷达到了1.75 kg·(m~3·d)~(-1)。运行期间,颗粒污泥的密实度和沉降性能均得到改善。由Miseq高通量测序的结果可知,CANON颗粒污泥具有相对较高的微生物多样性。对应于总氮比去除速率0.24 g·(gVSS·d)~(-1),Nitrosomonas(好氧氨氧化菌)与Candidatus Kuenenia(厌氧氨氧化菌)丰度比值约为3:1。少量贫营养型亚硝酸盐氧化菌对CANON工艺没有显著影响。  相似文献   

18.
厌氧氨氧化颗粒污泥的快速形成   总被引:9,自引:2,他引:9       下载免费PDF全文
以好氧硝化颗粒污泥与厌氧氨氧化生物膜作为接种污泥,在缺氧条件下利用EGSB反应器培养厌氧氨氧化颗粒污泥。根据反应器内污泥性状以及运行效果,随时调整反应器的进水基质浓度以及上升流速等关键控制因素,加快厌氧氨氧化颗粒污泥的快速形成。同时考察系统的脱氮效能、粒径分布、厌氧氨氧化颗粒污泥表面形态以及内部结构与微生物分布情况。反应器运行80 d后,培养出成熟的厌氧氨氧化颗粒污泥,平均粒径为0.556 mm;89 d时,总氮去除负荷达4.758 kg N·m-3·d-1。FISH表明颗粒污泥中厌氧氨氧化菌为优势菌种,同时SEM与TEM观察表明颗粒污泥是由多个小颗粒聚集形成,而且形状不规则,内部结构排列紧密。  相似文献   

19.
厌氧氨氧化污泥启动EGSB反应器研究   总被引:1,自引:0,他引:1  
通过厌氧膨胀颗粒污泥床(EGSB)反应器接种低温(4℃左右)下存放18个月的厌氧氨氧化污泥,处理模拟废水,研究如何用长时间低温保存后的厌氧氨氧化污泥启动反应器。在温度(34±1)℃、进水pH为7.40~7.64、DO的质量浓度控制在0.10 mg/L以下成功启动反应器。运行110 d后,进水TN负荷最高可达2.3 kg/(m.3d),NH4+-N、NO2--N去除率分别为90.93%、99.76%,出水pH明显高于进水,平均达到7.99;第135天在反应器中发现有红色厌氧颗粒污泥形成;经扫描电子显微镜观察,第165天厌氧颗粒污泥布满球状菌。  相似文献   

20.
生活污水对成熟厌氧氨氧化颗粒污泥的影响   总被引:1,自引:0,他引:1  
部分短程硝化和厌氧氨氧化技术的研究主要集中在高氨氮废水方面,对低氨氮浓度生活污水的研究相对较少。使经过除碳和部分短程硝化后的实际生活污水进入厌氧氨氧化UASB反应器,探究生活污水对成熟厌氧氨氧化颗粒污泥的影响。结果表明,当厌氧氨氧化UASB反应器的进水由配水变为生活污水后,反应器出水中氨氮浓度可降到5 mg·L-1以下,亚硝态氮浓度可降到1 mg·L-1以下,但是硝态氮的生成量高于理论值,可能是溶解氧被带入UASB反应器使硝化作用增强。UASB反应器内厌氧氨氧化污泥颜色由红色变为红黑色,T-EPS含量减少,PN/PS由1.13增大到3.66,沉降性变好,反应器内污泥中厌氧氨氧化菌Candidatus Brocadia所占比例由17.7%减少为14.4%,系统内AOB和NOB菌的含量增加,如果能够降低进入UASB反应器的溶解氧,有可能会减少出水硝氮,达到较好总氮去除效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号