首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
针对微气泡曝气技术对微污染水体的增氧效果进行中试研究。结果表明:1)当HRT为0.2~0.8 h、气水比为0.05~0.20、进水ρ(DO)为2.07~11.21 mg/L时,采用微气泡曝气技术对DO的全年提升率2.9%~94.1%,平均值为34.8%,夏、秋季的提升率明显高于春、冬季。2)微气泡曝气技术中,与氧利用率呈极显著相关的因素有水温、气水比、进水DO浓度以及进水TP浓度;与提升率呈极显著相关的因素有HRT、进水DO浓度。3)当HRT>0.6 h时可获得较佳的DO提升率与氧利用率;气水比的提高降低了氧利用率,对水体DO提升无显著影响。  相似文献   

2.
缓释氧材料应用于黑臭水体原位修复技术具有广阔的应用前景。材料释氧的长期性和有效性是促进黑臭水体修复的关键因素。实验通过在缓释氧材料制备过程中加入膨润土、黄糊精等材料,改进释氧材料的性能。模拟河道实验结果显示:改进后的缓释氧材料释氧速率平稳、释氧时间长,可以使水中DO浓度长期保持在10 mg/L以上。在缓释氧材料中添加一定量的pH缓冲剂对黑臭水体的pH变动有较好的缓冲作用,且对黑臭水体中微生物生存环境影响较小,可将水体pH值维持在适合微生物生存的环境,提高黑臭水体的生态修复效果。通过模拟2种投加方式对材料释氧效果,比较发现,相比平铺投加,采用释氧格栅的投加方式对水体DO浓度提升更为显著。  相似文献   

3.
分级设置改良A2O工艺中两级好氧池的溶解氧(DO),并对工艺脱氮、除磷能力进行了研究。当两级好氧池DO浓度均保持在约2.0 mg/L时,TN去除率为51.7%、TP去除率为75.6%,COD去除率为77.3%。适当降低好氧池1的DO浓度至约1.0 mg/L、好氧池2的DO浓度约2.0 mg/L时,脱氮除磷能力均增强,分别达到56.3%和77.5%,COD去除率77.5%。既提高了工艺对氮磷及有机污染物的去除效率,同时也降低了工艺运行时的曝气强度。保持好氧池1的DO浓度约1.0 mg/L、进一步升高好氧池2的DO浓度至约3.0 mg/L时,TN去除率降至42.2%、TP去除率进一步升高至82.1%,COD去除率也有所升高,达到80.4%。因此,两级好氧池DO梯度设置还可作为应对不同进水水质时,调节改良A2O工艺脱氮或除磷侧重能力的一种手段。  相似文献   

4.
A/O工艺生物除磷和好氧反硝化效果及影响因素研究   总被引:1,自引:1,他引:0  
采用A/O工艺处理低碳源城市污水,研究了生物除磷和好氧反硝化脱氮效果及其影响因素。试验结果表明:①磷的出水浓度低于0.8mg/L,去除率达到92%~98%;②影响好氧反硝化的主要因素为DO和HRT。当DO控制在2mg/L左右,HRT控制在6h时,好氧反硝化效果最好。增加了脱氮效率,减少了碳源和需氧量。NH4+-N去除率高达94%,总脱氮率可高达76%左右。  相似文献   

5.
自动增氧人工湿地处理农村生活污水脱氮研究   总被引:5,自引:2,他引:3  
针对人工湿地中溶解氧浓度不足和脱氮率偏低的问题,设计了自动增氧人工湿地进行农村生活污水处理对比试验研究.结果表明,自动增氧湿地内的DO浓度比普通人工湿地高0.3me期mg/L左右,TN、NH<,4><'+>-N去除率分别达到了67.41%、69.114%,比普通湿地高14.57%、19.79%.同时,自动增氧人工湿地系统中的亚硝化细菌、硝化细菌数量均高于普通人工湿地系统,说明自动增氧措施对于提高人工湿地脱氮效率是有效的.  相似文献   

6.
同步脱氮除磷工艺中好氧池最适氧浓度研究   总被引:1,自引:1,他引:0  
AB工艺无厌氧、缺氧段,氮、磷的去除率低,不具备深度脱氮除磷功能。而A2/O工艺具有同步脱氮除磷功能,可以作为AB工艺改造方案之一。试验以实际生活污水为对象,研究好氧池中不同的溶解氧浓度范围内系统对COD、氮、磷的去除效果。试验结果表明,好氧池DO对COD的去除影响较小,出水平均值达到21.9mg/L;对氨氮的去除则起着关键作用,在DO为3.0mg/L以下时,氨氮的去除率随着DO的增大而升高;DO为1.5~2.5mg/L时总氮去除效果最佳,过低、过高对总氮的去除都不利;总磷的去除效果几乎不受好氧池DO的影响,但厌氧池和缺氧池的释磷、吸磷过程却受DO的影响变化较大。系统中厌氧池和缺氧池同时出现了反硝化和吸磷作用,但尚不能判断是否存在反硝化除磷现象。  相似文献   

7.
垃圾渗滤液处理反应器中好氧反硝化研究   总被引:1,自引:1,他引:0  
为了探讨厌氧折流板-生物接触氧化工艺处理垃圾渗滤液好氧反应器的脱氮机理,采用反应器氮平衡的原理对脱氮问题进行了研究。研究结果表明:生物接触氧化反应器在进水pH=7.27、T=35℃和DO=0.5mg/L情况下发生了好氧反硝化,可用微环境理论来解释这一现象的发生;本试验生物接触氧化反应器中DO浓度,pH值,温度和泥龄为好氧反硝化的发生创造了适宜的条件。  相似文献   

8.
一体化A/O工艺中溶解氧对脱氮除碳的影响   总被引:1,自引:1,他引:0  
根据好氧-缺氧生物脱氮的工艺原理,设计了一体化A/O反应器,并就DO对其脱碳、脱氮处理效果的影响进行研究。结果表明,在水力停留时间HRT=12h,进水COD为300mg/L左右时,COD的平均去除率为93%。当好氧区DO在5mg/L左右时,脱氮效率最高,TN去除率达到70%。当好氧区DO为3 ̄4mg/L时,氨氮和总氮的去除可达到动态一致,它们的去除率均在50%~60%之间。  相似文献   

9.
好氧-低氧生物滤池对低碳氮比污水脱氮研究   总被引:2,自引:2,他引:0  
陈秀荣  艾奇峰  徐文璐  吴敏霖 《环境科学》2011,32(10):2986-2992
针对我国大多数城市污水低碳氮比的水质特点,提出以好氧-低氧淹没式生物滤池对其进行深度脱氮处理.试验过程中,保持好氧段DO为3.5~4.3 mg/L、低氧段DO为0.9~1.1 mg/L,通过调节2段进水分流比、水力停留时间(HRT)、进水碳氮比(C/N)实现深度脱氮效果.进行了3个阶段的试验研究:首先,以低C/N城市污...  相似文献   

10.
曝气生物滤池好氧反硝化脱氮的研究   总被引:4,自引:3,他引:1  
邓康  黄少斌  胡婷 《环境科学》2010,31(12):2945-2949
采用某钢铁厂含氮废水,利用生物滤池工艺,研究了曝气生物滤池的挂膜、溶解氧、碳氮比对好氧反硝化脱氮的影响.结果表明,利用富含好氧反硝化菌的富集菌液进行挂膜,16 d基本完成挂膜,脱氮率90%.当溶解氧较低时(DO为1.5~4.2mg/L),随着溶解氧的增大,反硝化效率提高,其中以DO为3.5 mg/L时的效果最好,脱氮率为95.4%.随着曝气量继续增加,脱氮率有所下降,当DO为8.0 mg/L时,脱氮率仍有44.8%.可推断系统中有好氧反硝化菌,存在以O2作为电子受体的好氧反硝化现象.随着碳氮比(COD/N)增大,反硝化效果提高.当COD/N为6~7时,基本能够满足反硝化所需碳源.此时脱氮率大于96%,亚硝态氮在整个反应过程中几乎没有积累,COD去除率在85%左右.  相似文献   

11.
常温连续流条件下,分别在两个反应器中投加悬浮填料和接种好氧颗粒污泥,通过控制工艺条件,两个反应器中均实现了同步硝化反硝化(SND)。改变进水溶解氧DO浓度、碳氮比(C/N)、有机负荷和NH4+-N负荷,分析比较了两个反应器脱氮的重要工艺条件。试验结果表明,在相同的工艺条件下,悬浮填料脱氮最佳DO浓度为1.0mg/L左右,最佳C/N为12;好氧颗粒污泥脱氮最佳DO浓度为1.5mg/L,最佳C/N为5。提高进水有机负荷,两个反应器COD去除率均稳定在较高的水平。NH4+-N浓度升高时,反应器脱氮效率均降低,好氧颗粒污泥比悬浮填料更耐冲击负荷。  相似文献   

12.
典型城市河流中嗅味物质和微生物菌落特征   总被引:7,自引:4,他引:3  
对某城市河流沿程水质、典型嗅味物质以及微生物群落结构进行了调查分析. 结果表明:河水中2种嗅味物质〔二甲基异莰醇(2-MIB)和土臭素(Geosmin)〕的质量浓度均受到ρ(DO)的显著影响. 绝对厌氧条件〔ρ(DO)<0.2 mg/L〕水体中,ρ(二甲基异莰醇)和ρ(土臭素)的平均值分别为794.8和269.8 ng/L;好氧条件〔ρ(DO)>2.0 mg/L〕水体中,二者的平均值分别为91.6 和104.7 ng/L;而且ρ(DO)较低时,水体中的可疑致病菌含量升高,微生物安全性降低. 控制该河流水体ρ(DO)在2.0 mg/L以上,有利于抑制水体中嗅味物质的产生,可提高河流水体的微生物安全性.   相似文献   

13.
采用稳定运行的CANON颗粒污泥,探究不同DO浓度对CANON工艺脱氮性能的影响.结果表明,当DO小于0.46mg/L时,CANON反应器可在连续曝气方式下运行.随着DO从0mg/L升高至0.46mg/L,系统脱氮速率从0提高到50.88mg N/(L·h);当DO大于0.46mg/L时,CANON反应器必须以间歇曝气方式运行;随着DO从0.46mg/L升高至2.8mg/L,系统脱氮速率从50.88mg N/(L·h)降低为41.84mg N/(L·h).CANON反应器在DO为0.46mg/L时脱氮速率最高,达到50.88mg N/(L·h),污泥脱氮负荷为0.45kg N/(kg MLSS·d).CANON颗粒污泥大小及结构对AOB和anammox菌的活性影响较大:由于液相向颗粒污泥的传质阻力,AOB的DO半饱和常数为0.77mg/L;而对于anammox菌,当DO小于0.46mg/L时,随DO浓度上升,其活性下降缓慢;当DO大于0.46mg/L时,随DO浓度上升,其活性迅速下降;当DO超过1.0mg/L时,anammox菌接近失活.  相似文献   

14.
通过改性泥炭和改性沸石对微污染水体中污染物的去除实验的研究,得出改性泥炭和改性沸石单独处理微污染水时都能有效地去除水体中COD、氨氮、总磷,联合作用时对水体中的COD、总磷可以达到更高的去除率,但对氨氮的去除率有所下降.结果表明:微污染水在最适实验条件下进行吸附实验得出的效果是水体中的化学需氧量(TCOD)、氨氮(NH4+-N)、总磷(TP)的浓度分别从77 mg/L、3.75 mg/L、0.40 mg/L降低到20.06 mg/L、0.041 mg/L、0.35 mg/L.两种吸附剂联合作用对污染物的去除率比吸附剂单独作用污染物要高.  相似文献   

15.
城市污水水解-厌氧-微氧联合处理工艺   总被引:6,自引:0,他引:6  
采用水解 -厌氧 -微氧联合处理工艺处理城市污水的研究结果表明 :在总 HRT不超过 8.5h(水解 2.5h、厌氧 4.0h、微氧2.0 h) ,平均温度为 19℃ ,进水COD浓度为300±50 mg/L时 ,总 COD和 SS的去除率分别可达75%和80%以上 .总出水COD、BOD、SS完全达到国家二级排放标准 .微氧单元对厌氧出水中残余有机物去除效果良好 ,HRT不超过 2h,DO控制在 0.2 mg/L~0.5mg/L左右 ,进水为150mg/L时 ,去除率可达 53%以上 .微氧污泥沉降性能良好 ,SVI=38.8ml/g.水解 -厌氧 -微氧工艺在突出低能耗的前提下 ,达到了较高的有机物去除率 ,与现有的城市污水处理工艺相比有一定的优越性 .  相似文献   

16.
以人工模拟生活污水为处理对象,研究了在不同好氧区溶解氧浓度对一体化膜泥法OCO反应器脱氮削碳的影响。结果表明:在进水COD均值为300mg/L,进水流量为20L/h时,缺氧区与混合区的DO随好氧区的DO而变;在DO为2mg/L左右时,具有较理想的脱氮削碳效果,出水氨氮、总氮和COD分别为0.5mg/L、8mg/L和12mg/L去除率分别达到99%、80%和96%;结合化学除磷,TP的去除率可达91%以上。  相似文献   

17.
机械增氧作为一种常规增氧技术曾得到广泛应用,但其能耗高、扰动大、影响水运和自然美观,且对水下增氧能力有限.为了提高水下溶解氧(DO)水平,本文利用自行设计的一种兼有脱氮除磷作用的便捷式水下化学增氧器来探讨其最优增氧条件,并对比了水下化学增氧器(装置组)、机械增氧曝气机(曝气组)和未增氧水体(空白组)的水质情况.结果表明...  相似文献   

18.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺。本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化。结果表明,通过低气水比(小于1:2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能。DO浓度低于1.0 mg·L-1、进水C/N比为1:2.8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76.3%,TN平均去除负荷为1.42kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86.0%。随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低。生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致。  相似文献   

19.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺.本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化.结果表明,通过低气水比(小于1∶2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能. DO浓度低于1. 0 mg·L-1、进水C/N比为1∶2. 8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76. 3%,TN平均去除负荷为1. 42 kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86. 0%.随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低.生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致.  相似文献   

20.
为实现同步硝化内源反硝化除磷(SNEDPR)系统的优化运行,以实际生活污水为处理对象,采用厌氧(180min)/好氧运行的SBR反应器,并通过联合调控好氧段溶解氧(DO)浓度(0.3~1.0mg/L)和好氧时间(150~240min),考察了该系统脱氮除磷特性.并结合荧光原位杂交(FISH)技术对系统优化过程中各功能菌群的结构变化情况进行了分析.试验结果表明,当系统好氧段DO浓度由约1.0mg/L逐渐降至0.3mg/L,且好氧时间由150min逐渐延长至240min后,出水PO43--P浓度稳定在0.4mg/L左右,但出水TN浓度由14.3mg/L降至8.7mg/L,TN去除率由75%提高至84%.此外,随着好氧段DO浓度的降低,SNED现象愈加明显,SNED率由34.7%逐渐升高至63.8%.SNED的加强,降低了出水NO3--N浓度,并提高了系统的脱氮性能和厌氧段的内碳源储存量.FISH结果表明:经127d的优化运行,系统内PAOs,GAOs和AOB(氨氧化菌)仍保持在较高水平(分别全菌的29%±3%,20%±3%和13%±3%),其保证了系统除磷、硝化和反硝化脱氮性能;但NOB(亚硝酸盐氧化菌)含量减少了50%,为系统内实现短程硝化内源反硝化提供了可能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号