首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: To establish baseline values for descending thoracic aortic blood flow parameters as determined with a transesophageal combined M‐mode and pulsed Doppler ultrasound‐based monitoring method. Design: Preliminary observational study. Setting: University small animal teaching hospital. Animals: The study population consisted of anesthetized canine patients undergoing nonemergent surgeries. Prospectively set criteria for inclusion were adequate body size for placement of the esophageal probe and a nonemergent reason for surgery. The criterion for exclusion was recent trauma. Interventions: Placement of the transesophageal probe. Measurements and main results: Data was collected during 15 surgeries. Data from three dogs was excluded from data analysis (two recently hit by motor vehicles, one recently having undergone a total hip replacement). Each parameter was stable across time within each individual dog. The ranges of the descending thoracic aortic parameters across the 12 nonemergent cases were as follows: blood flow, 0.038–0.085 L min?1 kg?1; blood flow per beat, 0.31–0.84 mL kg?1; blood acceleration, 6–29 m s2?1; blood peak velocity, 38–105 m s?1; left ventricular ejection time interval 331–492 ms; and diameter, 0.30–0.93 mm kg?1. Conclusions: The range of descending thoracic aortic blood flow parameters encountered in this small group of dogs during nonemergent surgeries was broad; however, each parameter was quite stable across time with little change occurring in any dog during monitoring.  相似文献   

2.
Objective: To determine the accuracy of indirect blood pressure (BP) measurements obtained with a pulse oximeter as compared with direct measurements in dogs under isoflurane anesthesia. The Doppler and oscillometric BP monitors were included for comparison. Design: Prospective, experimental study. Animals: Twenty healthy dogs (23 ± 8 kg) anesthetized for research or teaching. Interventions: Dogs were anesthetized with propofol or thiopental and maintained using positive pressure ventilation with isoflurane in 100% O2. Random adjustment of BP was achieved by inhalant adjustment or dopamine infusion to achieve low (≤85 mmHg), normal (90–120 mmHg), or high systolic BP (≥125 mmHg). Triplicate measurements for BP were taken with direct (dorsal pedal artery), Doppler (forelimb), oscillometric (same forelimb), and plethysmographic (pulse oximeter on tongue) methods. Measurements and main results: Using regression analysis and a modified Bland–Altman's technique, the lowest bias was achieved with the Doppler. Systolic BP readings at low, normal, and high BP were within 10 mmHg of direct recordings 95%, 70%, and 30% of the time for pulse oximetry; 95%, 85%, and 55% of the time for Doppler; 42%, 65%, and 30% of the time for oscillometric determination, respectively. Oscillometric mean BP readings were within 10 mmHg of direct measurements 53%, 60%, and 45% of the time, respectively. Conclusions: The pulse oximeter is an acceptable method for measuring BP in anesthetized dogs if assessment of trends is sufficient. All indirect methods showed greater bias and poorer precision at high BP. The Doppler may be the preferred indirect method.  相似文献   

3.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

4.
5.
ObjectiveTo compare the hemodynamic and respiratory effects of an inspiratory impedance threshold device (ITD) in anesthetized normotensive and hypotensive dogs.Study designProspective randomized study.AnimalsTen adult dogs.MethodsDogs were anesthetized with propofol followed by isoflurane. During spontaneous ventilation, tidal volume ( V˙), systolic (SAP), mean (MAP) and diastolic arterial blood pressure, central venous pressure, gastric PCO2 as an indicator of gastric perfusion, subcutaneous oxygen tension, subcutaneous blood flow, cardiac index (CI), systemic vascular resistance and blood lactate were monitored. To monitor respiratory compliance (RC) and resistance (ResR), animals were briefly placed on mechanical ventilation. Dogs were studied under four different conditions: 1) normotension (MAP > 60 mmHg) with and without the ITD and 2) hypotension (target MAP = 40 mmHg) with and without ITD. These four conditions were performed during one anesthetic period, allowing for stabilization of parameters for each condition. Data were analyzed by anova repeated measure mixed models.ResultsNo cardiovascular changes were detected between no ITD and ITD in the normotensive state. During hypotension, CI was higher with the ITD (5 ± 1.0 L minute?1 m?2) compared with no ITD (4 ± 1.3 L minute?1 m?2). During hypotension, SAP was increased with ITD (80 ± 14 mmHg) versus without ITD (67 ± 13 mmHg). There was an increase in ResR and decreased RC with the ITD in both normotensive and hypotensive state.Conclusion and clinical relevanceImpedance threshold device in dogs during isoflurane-induced hypotension improved CI and SAP but had negative effects on RC and ResR.  相似文献   

6.
ObjectiveTo evaluate the systemic cardiovascular effects of dose escalating administration of norepinephrine in healthy dogs anesthetized with isoflurane.Study designExperimental study.AnimalsA total of six adult laboratory Beagle dogs, 10.5 (9.2–12.0) kg [median (range)].MethodsEach dog was anesthetized with isoflurane at an end-tidal concentration of 1.7%, mechanically ventilated and administered a continuous rate infusion of rocuronium (0.5 mg kg–1 hour–1). Each dog was administered incremental dose rates of norepinephrine (0.05, 0.125, 0.25, 0.5, 1.0 and 2.0 μg kg–1 minute–1), and each dose was infused for 15 minutes. Cardiovascular variables were recorded before administration and at the end of each infusion period.ResultsNorepinephrine infusion increased mean arterial pressure (MAP), cardiac output (CO) and oxygen delivery in a dose-dependent manner. Systemic vascular resistance did not significantly change during the experiment. Stroke volume increased at the lower dose rates and heart rate increased at the higher dose rates. Oxygen consumption and lactate concentrations did not significantly change during infusions.ConclusionsIn dogs anesthetized with isoflurane, norepinephrine increased MAP by increasing the CO. CO increased with a change in stroke volume at lower dose rates of norepinephrine. At higher dosage, heart rate also contributed to an increase in CO. Norepinephrine did not cause excessive vasoconstriction that interfered with the CO during this study.Clinical relevanceNorepinephrine can be useful for treating hypotension in dogs anesthetized with isoflurane.  相似文献   

7.
8.
Objective – To compare blood pressure measurements obtained via ultrasonic Doppler flow monitor (DOP) and 2 oscillometric noninvasive blood pressure monitors (CAR and PAS) to invasive blood pressure (IBP) in hospitalized, conscious dogs with a range of blood pressures. Design – Prospective clinical study. Setting – University teaching hospital. Animals – Eleven client‐owned dogs aged between 4 months and 11.5 years (median 6 y), and weighing between 5.8 and 37.5 kg (median 30.2 kg). Interventions – Blood pressure measurement. Measurements and Main Results – Three consecutive measurements of systolic, diastolic, and mean arterial pressure (MAP) were recorded for each of the 3 indirect devices (only systolic for DOP), along with concurrent IBP measurements. The data were categorized into 3 groups: hypotensive (direct MAP<80 mm Hg), normotensive (80 mm Hg≤direct MAP≥100 mm Hg), and hypertensive (direct MAP>100 mm Hg). Each indirect method was compared with the corresponding direct arterial pressure using the Bland‐Altman method. Within the hypotensive group, each indirect method overestimated the corresponding IBP. Within the normotensive group all indirect systolic measurements and the PAS diastolic measurements underestimated the corresponding IBP. The remaining indirect measurements overestimated the corresponding IBP. Within the hypertensive group, DOP and CAR systolic measurements underestimated the corresponding IBP, and the remaining indirect measurements overestimated the corresponding IBP. In hypertensive dogs oscillometric systolic measurements were more accurate than MAP. In hypotensive dogs MAP measurements were more accurate than systolic measurements. All indirect measurements were most accurate in hypertensive dogs. Conclusions – The noninvasive blood pressure monitors in our study did not meet the validation standards set in human medicine. However, CAR diastolic and MAP measurements within the normotensive group, CAR MAP measurements within the hypertensive group, and PAS diastolic measurements in all groups were close to these standards. All indirect measurements showed greater bias during hypotension. Precision was poorer for all indirect systolic measurements than for MAP.  相似文献   

9.
ObjectiveTo compare cardiac output (CO) measured by Doppler echocardiography and thermodilution techniques in spontaneously breathing dogs during continuous infusion of propofol. To do so, CO was obtained using the thermodilution method (COTD) and Doppler evaluation of pulmonary flow (CODP) and aortic flow (CODA).Study designProspective cohort study.AnimalsEight adult dogs weighing 8.3 ± 2.0 kg.MethodsPropofol was used for induction (7.5 ± 1.9 mg kg?1 IV) followed by a continuous rate infusion at 0.7 mg kg?1 minute?1. The animals were positioned in left lateral recumbency on an echocardiography table that allowed for positioning of the transducer at the 3rd and 5th intercostal spaces of the left hemithorax for Doppler evaluation of pulmonary and aortic valves, respectively. CODP and CODA were calculated from pulmonary and aortic velocity spectra, respectively. A pulmonary artery catheter was inserted via the jugular vein and positioned inside the lumen of the pulmonary artery in order to evaluate COTD. The first measurement of COTD, CODP and CODA was performed 30 minutes after beginning continuous infusion (T0) and then at 15‐minute intervals (T15, T30, T45 and T60). Numeric data were submitted to two‐way anova for repeated measurements, Pearson’s correlation coefficient and Bland &; Altman analysis. Data are presented as mean ± SD.ResultsAt T0, COTD was lower than CODA. CODA was higher than COTD and CODP at T30, T45 and T60. The difference between the COTD and CODP, when all data were included, was ?0.04 ± 0.22 L minute?1 and Pearson’s correlation coefficient (r) was 0.86. The difference between the COTD and CODA was ?0.87 ± 0.54 L minute?1 and r = 0.69. For COTD and CODP, the difference was ?0.82 ± 0.59 L minute?1 and r = 0.61.ConclusionDoppler evaluation of pulmonary flow was a clinically acceptable method for assessing the CO in propofol‐anesthetized dogs.  相似文献   

10.

Objective

To compare electrical velocimetry (EV) noninvasive measures of cardiac output (CO) and stroke volume variation (SVV) in dogs undergoing cardiovascular surgery with those obtained with the conventional thermodilution technique using a pulmonary artery catheter.

Study design

Prospective experimental trial.

Animals

Seven adult Beagle dogs with a median weight of 13.6 kg.

Methods

Simultaneous, coupled cardiac index (CI; CO indexed to body surface area) measurements by EV (CIEV) and the reference pulmonary artery catheter thermodilution method (CIPAC) were obtained in seven sevoflurane-anaesthetized, mechanically ventilated dogs undergoing experimental open-chest cardiovascular surgery for isolated right ventricular failure. Relationships between SVV or central venous pressure (CVP) and stroke volume (SV) were analysed to estimate fluid responsiveness. Haemodynamic data were recorded intraoperatively and before and after fluid challenge.

Results

Bland–Altman analysis of 332 matched sets of CI data revealed an overall bias and precision of – 0.22 ± 0.52 L minute?1 m?2 for CIEV and CIPAC (percentage error: 30.4%). Trend analysis showed a concordance of 88% for CIEV. SVV showed a significant positive correlation (r2 = 0.442, p < 0.0001) with SV changes to a volume loading of 200 mL, but CVP did not (r2 = 0.0002, p = 0.94). Better prediction of SV responsiveness (rise of SV index of ≥ 10%) was observed for SVV (0.74 ± 0.09; p = 0.014) with a significant area under the receiver operating characteristic curve in comparison with CVP (0.53 ± 0.98; p = 0.78), with a cut-off value of 14.5% (60% specificity and 83% sensitivity).

Conclusions and clinical relevance

In dogs undergoing cardiovascular surgery, EV provided accurate CO measurements compared with CIPAC, although its trending ability was poor. Further, SVV by EV, but not CVP, reliably predicted fluid responsiveness during mechanical ventilation in dogs.  相似文献   

11.
12.
Objective and hypothesis: To determine whether or not there is agreement between the thermodilution and echocardiographic measurement of cardiac output (CO) during normovolemia and acute hemorrhage. The hypothesis was that there will be agreement between echocardiographic measurement of CO (ECO) and thermodilution measurement of CO (TDCO) during normovolemia and acute hemorrhage. Design: CO was measured by both thermodilution and echocardiography during α‐chloralose anesthesia in dogs before and 15 and 30 minutes following acute arterial hemorrhage. Setting: Laboratory investigation. Animals: Eighteen clinically healthy dogs, weighing 20–25 kg, anesthetized with α‐chloralose. Interventions: Acute arterial hemorrhage of approximately 50% of the total blood volume. CO was measured by thermodilution and echocardiography before and 15 and 30 minutes following hemorrhage. Measurements and main results: Acute hemorrhage resulted in a significant decrease in CO. There was a lack of agreement between the 2 methods to measure CO at each time and at all anatomic points of measurement in the aorta and pulmonary artery. Conclusion: There is a lack of agreement between the 2 methods; thus, determination of CO by echocardiography may not be a clinically useful tool following hemorrhage in dogs.  相似文献   

13.
ObjectiveTo demonstrate if modified passive leg raise (PLRM) maneuver can be used for volumetric evaluation of fluid responsiveness (FR) by inducing cardiac output (CO) changes during experimental induction and correction of hypovolemia in healthy anesthetized dogs. The effects of PLRM on plethysmographic variability index (PVI) and pulse pressure variation (PPV) were also investigated.Study designProspective, crossover study.AnimalsA total of six healthy anesthetized Beagle dogs.MethodsDogs were anesthetized with propofol and isoflurane. They were mechanically ventilated under neuromuscular blockade, and normothermia was maintained. After instrumentation, all dogs were subjected to four stages: 1, baseline; 2, removal of 27 mL kg–1 circulating blood volume; 3, after blood re-transfusion; and 4, after 20 mL kg–1 hetastarch infusion over 20 minutes. A 10 minute stabilization period was allowed after induction of each stage and before data collection. At each stage, CO via pulmonary artery thermodilution, PVI, PPV and cardiopulmonary variables were measured before, during and after the PLRM maneuver. Stages were sequential, not randomized. Statistical analysis included repeated measures anova and Tukey’s post hoc test, considering p < 0.05 as significant.ResultsDuring stage 2, PLRM at a 30° angle significantly increased CO (mean ± standard deviation, 1.0 ± 0.1 to 1.3 ± 0.1 L minute–1; p < 0.001), with a simultaneous significant reduction in PVI (38 ± 4% to 21 ± 4%; p < 0.001) and PPV (27 ± 2% to 18 ± 2%; p < 0.001). The PLRM did not affect CO, PPV and PVI during stages 1, 3 and 4.Conclusions and clinical relevanceIn anesthetized dogs, PLRM at a 30° angle successfully detected FR during hypovolemia, and identified fluid nonresponsiveness during normovolemia and hypervolemia. Also, in hypovolemic dogs, significant decreases in PVI and PPV occurred in response to PLRM maneuver.  相似文献   

14.
Objective – To determine the accuracy and precision of an oscillometric noninvasive blood pressure device as a predictor of invasive direct blood pressure in healthy anesthetized hypotensive and normotensive dogs. Design – Prospective observational study. Setting – University teaching hospital. Animals – Eight crossbred adult dogs. Interventions – Anesthesia was induced with propofol and maintained with isoflurane. A catheter was placed in the dorsal pedal artery to record systolic, mean, and diastolic arterial blood pressures (aSAP, aMAP, and aDAP, respectively). The noninvasive blood pressure device cuff was placed around the contralateral front limb to record noninvasive systolic, mean, and diastolic blood pressure (nSAP, nMAP, and nDAP). Two states of blood pressure (BP) were studied: baseline state was established by keeping end‐tidal isoflurane concentration at 1.2±0.1%. The hypotensive state was achieved by maintaining the same isoflurane concentration while withdrawing approximately 40% of the animal's blood volume until aMAP was stable at approximately 40 mm Hg. At the end of the study, blood was returned to the animal and it was allowed to recover from anesthesia. Measurements and Main Results – Agreement between the direct and indirect BP measurements was determined by the Bland‐Altman method. The SAP and MAP but not DAP bias varied significantly between each BP state. Normotensive absolute biases (mean [SD]) for SAP, MAP, and DAP were ?14.7 mm Hg (15.5 mm Hg), ?16.4 mm Hg (12.1 mm Hg), and ?14.1 mm Hg (15.8 mm Hg), respectively. Absolute biases during the hypotensive state for SAP, MAP, and DAP were ?32 mm Hg (22.6 mm Hg), ?24.2 mm Hg (19.5 mm Hg), and ?16.8 mm Hg (17.2 mm Hg), respectively. Conclusion – The oscillometric device was not reliably predictive of intra‐arterial BP during hypotension associated with acute hemorrhage.  相似文献   

15.
16.
Two non-invasive blood pressure (NIBP) devices (oscillometry and Doppler) were compared to invasive blood pressure using a Bland–Altman analysis, in anesthetized and conscious dogs. When considering the systolic arterial pressure only during general anesthesia, both NIBP devices slightly underestimated the systolic arterial blood pressure however the precision and the limits of agreement for the Doppler were of a greater magnitude. This indicates a worse clinical performance by the Doppler. The performance of both NIBP devices deteriorated as measured in conscious animals. In general, for the oscillometric device, determination of invasive diastolic and mean arterial pressures was better than the invasive systolic arterial pressure. Overall, the oscillometric device satisfied more of the criteria set by the American College of Veterinary Internal Medicine consensus statement. Based upon these results, the oscillometric device is more reliable than the Doppler in the determination of blood pressure in healthy medium to large breed dogs.  相似文献   

17.
为了观察对药"延胡索-冰片"对麻醉犬脑血流动力学的影响,将健康成年家犬30只随机平均分为对照组、对药组、延胡索组、冰片组、阳性对照组,分别灌入蒸馏水、相关药物和常规药物脑心通胶囊,观察实验动物180 min内的血压(BP)、心率(HR)、脑血流量(CBF)和脑血管阻力(CVR)的变化情况,结果显示,对药"延胡索-冰片"能够有效降低实验动物的血压,尤其是在30min内即可迅速起效,作用优于常规药物(P0.01),但是超过180min后作用有所缓解;对于实验动物的心率无明显影响;能够有效增加试验家犬的脑血流量,尤其是在30 min内即可迅速起效,且效果呈逐渐递增的趋势,作用优于常规药物(P0.05);对药"延胡索-冰片"能够有效降低家犬的脑血管阻力,尤其是在30min内即可迅速起效,至120 min时达到最佳效果,作用优于常规药物(P0.05)。本研究显示,对药"延胡索-冰片"能够有效降低血压,减少脑血管阻力,增加脑血流量,调整脑部血管功能,改善脑部血液循环,对于脑组织缺血损伤具有明显保护作用,其起效时间迅速,在30 min左右即可起效,120 min左右达到作用峰值,但是其确切的作用机制有待进一步研究。  相似文献   

18.
OBJECTIVE: The objective of this review was to describe the methodology and limitations of techniques that have been used to measure skeletal muscle blood flow in anaesthetized horses. DATABASE USED: Pubmed, personal files. CONCLUSION: Numerous techniques have been used in horses to study skeletal muscle blood flow during anaesthesia and after the administration of vasoactive agents. Of the available techniques, blood flow measurements are limited to either microvascular flow (radioactive xenon, laser Doppler flowmetry) or total blood flow (radioactive microspheres, electromagnetic flowmetry, Doppler ultrasonography). None of the techniques currently available are able to fully assess the distribution of flow throughout the skeletal muscle. Near-infrared spectroscopy has the potential to assess the adequacy of oxygenation within muscles; however, this technique is not without limitations, and more work is required to assess its suitability. Understanding the limitations of these techniques is an important prerequisite to the critical evaluation of the information currently available on the effects of anaesthesia and vasoactive drugs on skeletal muscle blood flow.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号