首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The desal 5 DL membrane (Dow Chemical, USA) was used to recover lactose from whey ultrafiltration permeate. Lactose and ions rejection and permeate flux were measured using ultrafiltered sweet whey as feed solution. Three different operation modes (total recycle mode, concentration mode and continuous diafiltration mode) were considered. Lactose retention was predicted by means of the Donnan Steric Partioning model (DSPM) and the Kedem–Spiegler model (KSM). The best fit for the total recycle and concentration modes was obtained with the KSM. Moreover, the KSM predictions were worse for the CDM. These models contribute to a better understanding of the transport mechanisms involved in nanofiltration processes and to optimize the process at industrial scale. The two models can be considered as a useful tool to improve the recovery, demineralization and concentration of lactose.  相似文献   

2.
SUMMARY– Permeation rate, retention, and solute flux during reverse osmosis of whey and whey fractions were compared using two types of cellulose acetate membranes. When the feed solutions contained no molecules larger than lactose, concentration polarization had little influence on performance except at the highest available driving force (applied pressure minus difference between osmotic pressures of the feed and permeate = 37.8 atm). With the more complex feeds (whey and deproteinized whey), both concentration polarization and fouling of the membrane occurred. Concentration polarization decreased both permeation rate and retention. Fouling decreased permeation rate, but its influence on retention was variable and depended principally on the feed, the solute, and the available driving force. Proteins and other macromolecules in whey had a greater influence on performance during reverse osmosis than smaller solute molecules. With whey as feed, maximum permeation rates were achieved at low available driving forces (10-12 atm), and were similar for the two types of membranes (about 1 ml/cm2*sec). Increasing the available driving force increased retention and therefore reduced solute flux. Choice between the two membranes requires a compromise between extent of desalting and loss of lactose in the permeate.  相似文献   

3.
The use of nanofiltration (NF) membranes for water recycling requires an improved understanding of the factors that govern rejection of potentially harmful organic trace contaminants. Rejections of 15 perfluorochemicals (PFCs)--5 perfluorinated sulfonates, 9 perfluorinated carboxylates, and perfluorooctane sulfonamide (FOSA)--by four nanofiltration membranes (NF270, NF200, DK, and DL) were measured. Rejections for anionic species were >95% for MW >300 g/mol. FOSA (MW = 499 g/mol), which is uncharged at the pH of deionized water (5.6), was rejected as little as 42% (DL membrane). Decreasing the pH to less than 3 decreases rejection by up to 35%, effectively increasing the MWCO of NF270 by >200 g/mol, while a 2500 mg/L NaCl equivalent increase in ionic strength reduces rejections <1%. An alginate fouling layer increases transmission, where quantifiable, by factors of 4-8. Accumulation of PFCs on membranes was measured after the completion of rejection experiments. Based on rejection kinetics and the extent of sorption, we infer that two different sorption processes are significant: charged species adsorb quickly to the membrane surface, whereas the uncharged FOSA absorbs within the membrane matrix in a much slower process.  相似文献   

4.
ABSTRACT: Pilot‐scale microfiltration (MF), microfiltration‐diafiltration (MDF), ultrafiltration (UF), ultrafiltration‐diafiltration (UDF), and nanofilration (NF) membrane fractionation processes were designed and evaluated for removing 90% to 95% of the lactose and sodium from skim milk. The study was designed to evaluate several membrane fractionation schemes as a function of: (1) membrane types with and without diafiltration; (2) fractionation process temperatures ranging from 17 to 45 °C; (3) sources of commercial drinking water used as diafiltrant; and (4) final mass concentration ratios (MCR) ranging from about 2 to 5. MF and MDF membranes provided highest flux values, but were unsatisfactory because they failed to retain all of the whey proteins. UDF fractionation processes removed more than 90% to 95% of the lactose and sodium from skim milk. NF permeate prepared from UDF cumulative permeate contained sodium and other mineral concentrations that would make them unsuitable for use as a diafiltrant for UDF applications. A method was devised for preparing simulated milk permeate (SMP) formulated with calcium, magnesium, and potassium hydroxides, and phosphoric and citric acids for use as UDF diafiltrant or for preparing lactose and sodium reduced skim milk (L‐RSM). MF retentates with MCR values of 4.7 to 5.0 exhibited extremely poor frozen storage stabilities of less than 1 wk at ?20 °C, whereas MCR 1.77 to 2.95 MDF and UDF retentates and skim milk control exhibited frozen storage stabilities of more than 16 wk. L‐RSM exhibited a whiter appearance and a lower viscosity than skim milk, lacked natural milk flavor, and exhibited a metallic off‐flavor.  相似文献   

5.
《Journal of dairy science》2023,106(7):4533-4544
The continuously increasing demand of lactic acid opens a window for the integration of membrane technology in the dairy industry, improving the sustainability by avoiding the use of large amounts of chemicals and waste generation. Lactic acid recovery from fermentation broth without precipitation has been studied by numerous processes. In this work, a commercial membrane with high lactose rejection and a moderate lactic acid rejection, enabling a permselectivity up to 40%, is sought to perform the simultaneous removal of lactic acid and lactose separation from the acidified sweet whey from mozzarella cheese production in a single stage. The AFC30 membrane of the thin film composite nanofiltration (NF) type was selected because of its high negative charge, low isoelectric point, and divalent ion rejection, as well as a lactose rejection higher than 98% and a lactic acid rejection lower than 37%, at pH 3.5, to minimize the need of additional separation steps. The experimental lactic acid rejection was evaluated at varying feed concentration, pressure, temperature, and flow rate. As the dissociation degree of lactic acid is negligible in industrially simulated conditions, the performance of this NF membrane was validated by the irreversible thermodynamic Kedem-Katchalsky and Spiegler-Kedem models, with the best prediction in the latter case, with the parameter values: Lp = 3.24 ± 0.87 L × m−2 × h−1 × bar−1 and = 15.06 ± 3.17 L × m−2 × h−1, and σ = 0.45 ± 0.03. The results obtained in this work open the way for the up-scaling of membrane technology on the valorization of dairy effluents by simplifying the operation process and the model prediction and the choice of the membrane.  相似文献   

6.
A membrane process is often accompanied by build-up of deposited layers on the membrane surface. Such layers change the performance of the system (e.g. the flux and rejection of solutes). Whey proteins were deposited on a reverse osmosis membrane to increase solute rejection. A gel-like deposited layer increased the rejection level of the system, while a porous deposited layer did not affect it. Further, in-situ denaturation of whey proteins helped to form the effective gel-like secondary membrane.  相似文献   

7.
Nanofiltration (NF) membrane processing was investigated as a method for deacidifying and demineralizing cottage cheese whey (CCW) as function of pH 3.0 to 6.5 so that it could be used in ice cream and other frozen dairy desserts. Membrane flux values after 30 min processing ranged from 7.5 to 9.0 Lm?2hr?1. Total processing time to produce volume concentration ratio 3 (VCR3) retentate and diafiltration against 3 volumes of water to produce DNF3 retentate ranged from 87 to 93 min at pH 3–4.35 to 180 to 210 min at pH 5.5–6.5. DNF3 retentate contained 0.33% lactic acid, 0.65% ash, 11.55% lactose and 14.47% total solids. Membrane rejection of lactic acid ranged from 31% for VCR3 retentate to 67.2% for DNF3 retentate. Membrane rejection of minerals for VCR3 and DNF3 retentates was 30% and 71%, respectively.  相似文献   

8.
Application of nanofiltration membranes to processing sweet whey and skim milk ultrafiltration permeate increased lactose crystal yield by about 10 and 8 %, respectively, at a concentration factor of 3.0. These increases were attributed to depletion of minerals, especially monovalent cations such as sodium and potassium, by the partial demineralization effect of the nanofiltration membrane. These membranes may be incorporated into current industrial processes for producing lactose from whey and milk permeates.  相似文献   

9.
In order to reach a high volume reduction ratio (VRR) prior to drying of skim milk, a membrane cascade comprising of an ultrafiltration (UF) coupled with a nanofiltration (NF) can be applied. The present study investigated the impact of processing (filtration temperature, transmembrane pressure (TMP)) and product (feed pH) parameters on the NF of skim milk UF permeate. It could be shown that a low filtration temperature of 10 °C is more advantageous in terms of flux stability and rejection of the solute fraction as compared to higher filtration temperatures up to 45 °C. The solution pH did not affect permeate flux and lactose retention. However, in order to avoid calcium losses, it is more favorable to conduct the concentration at a pH of 6.8 instead of at a lower pH of 5. The application of a higher TMP (up to 4 MPa) enhances permeate flux and VRR as well as solute rejection during concentration of UF permeate. It was also shown that the retention of solutes decreases towards the end of the concentration process. As a consequence, the achievement of high final VRR must be weighed against increased product losses at the end.  相似文献   

10.
Recovery of sugars from cane molasses is a promising approach to increase the added value of molasses and reduce its environmental pollution. In this work, for the first time, nanofiltration (NF) was used for the separation of sucrose and reducing sugar in cane molasses by a cascade diafiltration-concentration process. The retention difference between sucrose and reducing sugar by all the tested NF membranes was not distinct at 25 °C, while due to the thermal-induced pore size change and enhanced solute diffusivity, the NF retention behavior changed significantly at 60 °C, and the DL membrane with a sucrose retention of 96% and a reducing sugar retention 5% was selected for the process optimization and modeling. High temperature (55–60 °C), low permeate flux (below 15 Lm?2 h?1), and high sugar concentration resulted in a low retention of reducing sugar due to the dominant diffusive mass transfer, which was desirable for the molasses separation by NF. Mathematical modeling could well predict the diafiltration and concentration processes if using right sugar retention data. The deviations between prediction lines and experimental data in the cross-flow filtration of real solution were mainly caused by the permeate flux variation rather than membrane fouling. After diafiltration, the ratio of sucrose in total molasses sugar increased from 76.1 to 87.9%, while in the permeate of the second concentration step, the ratio of sucrose was only 2.4%. Thus, the retentate of diafiltration could be directly used for sucrose crystallization to avoid the accumulation of reducing sugar and salts, and the permeate of the second concentration step could be concentrated by NF270 at room temperature to produce syrup drinking.  相似文献   

11.
Soluble whey proteins (WPs), adsorbed on yeast cells, were recovered by a crossflow microfiltration (MF) technique using a cellulose nitrate membrane with a pore size of 0.45 μm. The crossflow velocity was 1.5 m s?1 with a transmembrane pressure of 200 kPa at 25 °C. A series of protein rejections occured at various pH values ranging from 2 to 8. WPs adsorbed more on to yeast cells at low pH (pH < 4) than at high pH values, probably because they were positively charged at low pH. It was also shown that permeate flux increased and Modified Membrane Fouling Index values decreased at low pH levels. When the yeast concentration was 50 g L?1, the flux decreased five times compared with that in the absence of yeast. Protein recovery increased with increasing yeast concentrations. The highest protein recovery was found to be 85% at a yeast concentration of 50 g L?1 at a steady state flux rate of 10?6 m s?1 at 25 °C. When diluted solutions of whey were used, the same rejection of protein, adsorbed on yeast cells, was achieved at ten times lower amounts of yeast cells. This technique not only provides for the recovery of protein but also may give rise to the direct use of yeast cells, which are rich in protein, in the baking industry. WPs absorbed by yeast cells can be used to produce nutritionally rich products in areas where yeasts have been already used.  相似文献   

12.
量化200 nm陶瓷膜脱除乳清蛋白、乳糖、灰分和钙的能力。在50℃条件下,对脱脂乳进行3倍浓缩,之后连续2次补水至原体积进行稀释过滤,浓缩倍数均为3,最终得到3次滤液,计算各组分总脱除率。结果表明乳糖脱除率为85.81%,α-乳白蛋白脱除率为79.27%,β-乳球蛋白脱除率为71.64%,灰分脱除率为62.16%,钙脱除率为35.64%。稀释过滤完毕后膜的纯水膜通量衰减系数为89.27%,使用质量分数为2%氢氧化钠和0.5%的硝酸溶液进行清洗,膜通量的恢复系数为99.07%。  相似文献   

13.
为量化0.05 μm陶瓷膜脱除羊乳中乳清蛋白、乳糖、灰分、钙和磷的能力,在50 ℃条件下,脱脂乳进行3 倍浓缩,之后2 次间歇补水至原体积进行清洗过滤,最终得到1 份截留液、3 份透过液,并计算各组分总脱除率。结果表明:乳清蛋白脱除率为96.17%,乳糖脱除率为86.42%,灰分脱除率为73.39%,钙脱除率为34.90%,磷脱除率为55%。稀释过滤完毕后膜的纯水膜通量衰减系数为55.57%,使用质量分数为2%氢氧化钠和1%的硝酸溶液进行清洗,膜通量的恢复系数为99.21%。0.05 μm陶瓷膜可以实现羊乳酪蛋白和其他组分的有效分离,该技术适合在没有干酪乳清的条件下,以生鲜乳为原料加工酪蛋白胶束粉、乳清蛋白粉、乳糖等乳基配料产品。  相似文献   

14.
Perfluorooctane sulfonate (PFOS) is an emergent contaminant of substantial environmental concerns. In this study, reverse osmosis (RO) and nanofiltration (NF) membranes were used to remove this toxic and persistent compound from PFOS-containing wastewater. Five RO membranes and three NF membranes were tested at a feed concentration of 10 ppm PFOS over 4 days, and the PFOS rejection and permeate flux performances were systematically investigated. PFOS rejection was well correlated to sodium chloride rejection. The rejection efficiencies for the RO membranes were > 99%, and those for the NF membranes ranged from 90-99%. Improvement in PFOS rejection, together with mild flux reduction (< 16%), was observed at longer filtration time. Such shifts in rejection and flux performance were probably due to the increased PFOS accumulation at longer duration, as shown by X-ray photoelectron spectroscopy and liquid chromatograph and tandem mass spectrometry results. A fraction of PFOS molecules might be entrapped in the polyamide layer of the composite membranes, which hindered the further passage of both water and other PFOS molecules. In a similar fashion, PFOS rejection and fouling were enhanced for greater initial flux and/or applied pressure, where PFOS accumulation was promoted probably due to increased hydrodynamic permeate drag. Flux reduction was also shown to correlate to membrane roughness, with the rougher membranes tend to experience more flux reduction than the smoother ones.  相似文献   

15.
ABSTRACT: The removal effect on excessive fusel alcohols from rice spirits were investigated using nanofiltration (NF) and ultrafiltration (UF). Compared to UF (GE and GH membranes), NF (DK and DL membranes) showed 10 times greater effect for fusel alcohols rejection due to molecular weight cut-off. On operating pressures, 488.95 kPa was suitable with a rejection rate attaining 44.2% for DK membrane. Only slight changes in physicochemical indices including ethanol concentration, flavor, total acidity, pH value, and soluble solid content were observed for rice-spirits after NF treatment. Moreover, rice spirits treated with the DK membrane achieved a higher score in sensory evaluation. We anticipated a practical application of the nonheat processes in rice spirits production.  相似文献   

16.
In the cheese industry, whey, which is rich in lactose and proteins, is underutilized, causing adverse environmental impacts. The fractionation of its components, typically carried out through filtration membranes, faces operational challenges such as membrane fouling, significant protein loss during the process, and extended operating times. These challenges require attention and specific methods for optimization and to increase efficiency. A promising strategy to enhance industry efficiency and sustainability is the use of enzymatic pre-treatment with the enzyme transglutaminase (TGase). This enzyme plays a crucial role in protein modification, catalyzing covalent cross-links between lysine and glutamine residues, increasing the molecular weight of proteins, facilitating their retention on membranes, and contributing to the improvement of the quality of the final products. The aim of this study is to review the application of the enzyme TGase as a pretreatment in whey protein filtration. The scope involves assessing the enzyme's impact on whey protein properties and its relationship with process performance. It also aims to identify both the optimization of operational parameters and the enhancement of product characteristics. This study demonstrates that the application of TGase leads to improved performance in protein concentration, lactose permeation, and permeate flux rate during the filtration process. It also has the capacity to enhance protein solubility, viscosity, thermal stability, and protein gelation in whey. In this context, it is relevant for enhancing the characteristics of whey, thereby contributing to the production of higher quality final products in the food industry. © 2023 Society of Chemical Industry.  相似文献   

17.
This study aims to develop a positively charged nanofiltration (NF) hollow fiber membrane for effective removal of ciprofloxacin from water. A novel NF membrane was fabricated by hyperbranched polyethyleneimine (PEI) induced cross-linking on a polyamide-imide hollow fiber support. The spongy-like, fully porous membrane support provides minimal transport resistance and sufficient mechanical strengths for water permeation under high pressures. It is found that the PEI modification significantly influences NF performance through the mechanisms of size exclusion, charge repulsion, and solute-membrane affinity. Specifically, after PEI induced cross-linking, the membrane pore size is significantly reduced. The membrane surface becomes more hydrophilic and positively charged. As a result of these synergic effects, the rejection of ciprofloxacin is substantially enhanced. Furthermore, experimental results show that the molecular weight of PEI has tremendous effect on NF performance of the as-modified membrane. The NF membrane modified by a high molecular weight PEI_60K exhibits the highest rejection, the lowest fouling tendency, and keeps a constant flux over the whole pH range. This study may have great potential for developing high-performance antifouling NF hollow fiber membranes for various industrial applications.  相似文献   

18.
This work compared laboratory-scale flat-sheet and pilot plant-scale spiral-wound wide-pore, negatively-charged ultrafiltration membranes for concentration of whey proteins. By placing a negative charge on the surface of ultrafiltration membranes, a wider pore size could be used to concentrate whey proteins because negatively-charged proteins were rejected by electrostatic repulsion and not simply sized-based sieving. Negatively-charged 100 kDa regenerated cellulose membranes had an 85% higher flux than unmodified 10 kDa membranes, and equivalent protein retention. The pilot plant-scale spiral-wound membranes had 70-fold more area, and a different membrane geometry than the laboratory-scale flat-sheet membranes, yet both membranes were successful in retaining >98% of the whey protein.  相似文献   

19.
Nanofiltration (NF) membranes typically carry a net electric charge, enabling electrostatic interactions to play a pivotal role in the rejection of species such as metals, nitrates, and other charged contaminants. In this study, two types of polymeric NF membranes, polyamide and cellulose acetate, were modified by ion implantation to increase the effective surface charge of the membranes. The modified membranes contain implanted ions in the membrane matrix, inducing a discrete, permanent charge in the active membrane layer. The presence of a permanent charge in the membrane matrix allows for increased electrostatic repulsive forces throughout the entire pH range. Streaming potential measurements were conducted as a function of pH for the modified and unmodified membranes to determine the effect of ion implantation on the zeta potential of the membranes. Rejection experiments were performed in order to quantify the effect of increased electrostatic repulsion on ion rejection, and flux measurements quantified the effect of the modification on permeability. Results indicate that electrostatic interactions near the membrane surface can affect rejection; however, the extent of the effect of increased membrane charge depends on physical-chemical characteristics of the membrane. Increased negative zeta potential of the modified membranes resulted in slightly higher rejection of salts with divalent co-ions from the membrane, with less increase observed with salts of monovalent co-ions. Modified membranes were less permeable than the unmodified membranes. Results of this research hold implications in membrane synthesis and modification studies as well as choice of membranes for water treatment applications.  相似文献   

20.
Flux rate performance for both rennet and cheddar wheys were similar to those described for acid casein whey beginning at 37–41 l m-2 h-1 and declining to 10 l m-2 h-l at volume concentration ratio of 4. The chloride in dry matter reduction for these wheys was much greater at 71% compared to ∼41% for acid casein whey. Losses of organic solids from acid casein whey in terms of chemical oxygen demand were similar to those published for cellulose acetate membranes. Lactose and true protein nitrogen (total protein nitrogen less non-protein nitrogen; NPN) losses amounted to 2.6% and 8.1% respectively. NPN constituted the main nitrogen loss (77%) through the HC-50 membrane. True protein loss increased as pH was lowered to 3.6. Solubility index values obtained for nanofiltered powders produced from acid casein whey were comparable with those obtained for conventional spray dried powders and whey protein concentrates. In a case study based on the performance of the HC-50 membrane the economic feasibility of nanofiltration along with other demineralization processes was assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号