首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The vertical hydraulic conductivity (Kv) of a stream or lake sediment is often determined in the field using standpipe tests. Calculation of Kv is based on the assumption that the hydraulic head in the pipe is equal to that of the stream or lake stage. In this work, a modified equation for Kv is developed for the standpipe test which is applicable when this assumption is not valid. The equation involves not only the hydraulic head at different times but also the difference in the hydraulic head (a) between the groundwater level and river stage. The effects of certain factors on Kv, such as the ratio of the hydraulic head at different times (h1/h2), the difference a, and the initial water table height (h0), are also discussed. The results show that when h1/h2 is constant, the relative error (Er) in Kv increases with the ratio a/h2. Furthermore, if a/h2 < 0.05, then for any value of h1/h2, Er is less than 5% using the modified equation. Also, if a/h2 is large, hydraulic head readings with larger h1/h2 ratios must be used to avoid large Er values. The results of a field test also indicate that the error in Kv decreases as the value of h0 increases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This study investigated the influence of the regional flow on the streambed vertical hydraulic conductivity (Kv) within the hyporheic zone in three stream reaches of the Weihe River in July 2016. The streambed Kv with two connected depths was investigated at each test reach. Based on the sediment characteristics, the three test reaches could be divided into three categories: a sandy streambed without continuous silt and clay layer, a sandy streambed with continuous silt and clay layer, and a silt–clay streambed. The results demonstrate that the streambed Kv mainly decreases with the depth at the sandy streambed (without continuous silt and clay layer) and increases with the depth at the other two test reaches. At the sandy streambed (with continuous silt and clay layer) where streambed Kv mainly decreases with the depth, the regional upward flux can suspend fine particles and enhance the pore spacing, resulting in the elevated Kv in the upper sediment layers. At another sandy streambed, the continuous silt and clay layer is the main factor that influences the vertical distribution of fine particles and streambed Kv. An increase in streambed Kv with the depth at the silt/clay streambed is attributed to the regional downward movement of water within the sediments that may lead to more fine particles deposited in the pores in the upper sediment layers. The streambed Kv is very close to the bank in the sandy streambed without continuous silt and clay layer and the channel centre in the other two test reaches. Differences in grain size distribution of the sediments at each test reach exercise a strong controlling influence on the streambed Kv. This study promotes the understanding of dynamics influencing the interactions between groundwater and surface water and provides guidelines to scientific water resources management for rivers.  相似文献   

3.
Xunhong Chen 《水文研究》2011,25(2):278-287
Characterization of streambed hydraulic conductivity from the channel surface to a great depth below the channel surface can provide needed information for the determination of stream‐aquifer hydrologic connectedness, and it is also important to river restoration. However, knowledge on the streambed hydraulic conductivity for sediments 1 m below the channel surface is scarce. This study describes a method that was used to determine the distribution patterns of streambed hydraulic conductivity for sediments from channel surface to a depth of 15 m below. The method includes Geoprobe's direct‐push techniques and Permeameter tests. Direct‐push techniques were used to generate the electrical conductivity (EC) logs and to collect sequences of continuous sediment cores from river channels, as well as from the alluvial aquifer connected to the river. Permeameter tests on these sediment cores give the profiles of vertical hydraulic conductivity (Kv) of the channel sediments and the aquifer materials. This method was applied to produce Kv profiles for a streambed and an alluvial aquifer in the Platte River Valley of Nebraska, USA. Comparison and statistical analysis of the Kv profiles from the river channel and from the proximate alluvial aquifer indicates a special pattern of Kv in the channel sediments. This depth‐dependent pattern of Kv distribution for the channel sediments is considered to be produced by hyporheic processes. This Kv‐distribution pattern implied that the effect of hyporheic processes on streambed hydraulic conductivity can reach the sediments about 9 m below the channel surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Streambed horizontal hydraulic conductivity (Kh) has a substantial role in controlling exchanges between stream water and groundwater. We propose a new approach for determining Kh of the shallow streambed sediments. Undisturbed sediment samples were collected using tubes that were horizontally driven into streambeds. The sediment columns were analysed using a permeameter test (PT) on site. This new test approach minimizes uncertainties due to vertical flow in the vicinity of test tube and stream stage fluctuations in the computation of the Kh values. Ninety‐eight PTs using the new approach were conducted at eight sites in four tributaries of the Platte River, east‐central Nebraska, USA. The Kh values were compared with the nondirectional hydraulic conductivity values (Kg) determined from 12 empirical grain‐size analysis methods. The grain‐size analysis methods used the same sediment samples as Kh tests. Only two methods, the Terzaghi and Shepherd methods, yielded Kg values close to the Kh values. Although the Sauerbrei method produced a value relatively closer to Kh than other nine grain‐size analysis methods, the values from this method were not as reliable as the methods of Terzaghi and Shepherd due to the inconsistent fluctuation of the average estimates at each of the test sites. The Zunker, Zamarin, Hazen, Beyer, and Kozeny methods overestimated Kh, while the Slichter, US Bureau of Reclamation (USBR), Harleman, and Alyamani and Sen methods underestimated Kh. Any of these specific grain‐size methods might yield good estimates of streambed Kh at some sites, but give poor estimates at other sites, indicating that the relationship between Kg and Kh is significantly site dependent in our study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface‐ and ground‐water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface‐ and ground‐water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in arid south eastern Washington, USA. In‐stream slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The slug tests were performed for each horizontal coordinate at 0·3–0·45, 0·6–0·75, 0·9–1·05 and 1·2–1·35 m depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median, and empirical cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0·3–0·45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface‐ and ground‐water interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Accurate estimation of streambed vertical hydraulic conductivity (Kv) is of great importance in the analysis of water quantity exchange and solute transfer between a stream and its sediments. The paper analyzed the inaccuracy of hydraulic conductivity values of sediments derived from grain-size distribution (Kg), which were determined from eight empirical grain-size methods to represent streambed Kv. In this study, the values of Kv for a streambed were derived using falling-head standpipe permeameter tests conducted at eight study sites in the Elkhorn River, Nebraska, and the tested streambed columns were then collected for grain-size analysis by sieving. These empirical methods were used to calculate the Kg values of the streambed from grain-size distribution data of sediments. Unlike many other studies, this study verifies Kg from grain-size distribution with Kv from permeameter tests on the basis of the same samples of streambed sediments. The Kg values derived from the eight empirical methods were larger than the Kv from permeameter tests; there are five methods that give Kg values of about 3–6 times larger than these Kv. The Kg values from the Kozeny formula followed by the Hazen formula give the largest overestimation error if they are used to represent the Kv of the streambed. The USBR and Shepherd formulas generated Kg values close to Kv, but these Kg values are still larger in general than the Kv values. Moreover, the new values of coefficient C for the empirical formulas were revised so that they can be used to calculate the approximate Kv of a streambed. Among the eight methods, the ratios of the original C values to the average new C range from 1.3 to 5.9. It can be hypothesized that smaller C values must be used in the estimation of Kv for general soil samples if these empirical formulas are used to calculate Kv.  相似文献   

8.
It has long been understood that streambed hydraulic conductivity plays an important role in surface-subsurface solute exchange. Using a portable falling head permeameter in situ, we estimated the horizontal hydraulic conductivity, K, of the near-surface streambed sediments at a total of 85 locations encompassing two depth intervals: 7.5–10 and 10–12.5 cm. The measurements were conducted in an 80 m reach of Indian Creek, a small urban stream in Philadelphia, PA, USA. We found that the ln K data within each sediment layer were Gaussian, but the combined data set was not. The results indicated that while the mean hydraulic conductivity decreased with depth, horizontal heterogeneity (e.g. the variance) increased with depth. This strong contrast between layers suggests that they should be treated as separated entities in modeling studies. Variogram analyses across the stream suggested symmetry with respect to the thalweg in the upper layer and fractality in the lower layer. The variograms along the streams suggested that the K data are random.  相似文献   

9.
The paper describes a permeameter test method for determination of the hydraulic conductivity(AT) along multi-directions in fluvial sediments with cross beddings.Unlike existing in-situ permeameter methods that determine hydraulic conductivity for submerged streambeds,our method was intended to measure hydraulic conductivity of exposed streambeds or fluvial sediments.The method was applied to the Wei River,Shaanxi Province,Central China for characterization of the anisotropy of K in a well-sorted fluvial sediment.The results illustrated that even in well-sorted sediments,cross-bedding and sediment fabrication(or texture) can lead to varied K values along different measurement directions.The K value was the largest along the dip direction(or the major direction) that is parallel to the orientation of cross bedding and the smallest in the direction perpendicular to the bedding(or the minor direction). The K value in a given direction between the major and minor direction often fell in the range bounded by the K values in the major and minor directions.The anisotropy ratio of K(the ratio of K value between the major and minor directions) in two trenches for this well-sorted fluvial sediment was up to 1.14 to 1.23,respectively.Our results also demonstrated that even for well-sorted sediments,the K values between two sampling points only about 10 cm apart can differ.It is clear that the K distribution strongly correlates to the bedding orientation.  相似文献   

10.
We investigated the changes of saturated hydraulic conductivity, Ksat , with depth of latosols developed on Precambrian basement rocks under primary rainforest, pasture and teak. In all cases, Ksat decreased with depth, with most of the decrease occurring between the surface and a depth of 30 cm. In conjunction with prevailing rainfall intensities and frequencies, this anisotropy supports a pronounced lateral component of hillslope flow paths, and also of overland flow under pasture. Our results are at variance with data from other latosols where Ksat tends to increase with depth, and hence suggest that considerable restraint is needed in generalization and extrapolation until results from a co‐ordinated effort at hydrology‐oriented data collection become available. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   

12.
This work evaluated the spatial variability and distribution of heterogeneous hydraulic conductivity (K) in the Choushui River alluvial fan in Taiwan, using ordinary kriging (OK) and mean and individual sequential Gaussian simulations (SGS). A baseline flow model constructed by upscaling parameters was inversely calibrated to determine the pumping and recharge rates. Simulated heads using different K realizations were then compared with historically measured heads. A global/local simulated error between simulated and measured heads was analysed to assess the different spatial variabilities of various estimated K distributions. The results of a MODFLOW simulation indicate that the OK realization had the smallest sum of absolute mean simulation errors (SAMSE) and the SGS realizations preserved the spatial variability of the measured K fields. Moreover, the SAMSE increases as the spatial variability of the K field increases. The OK realization yields small local simulation errors in the measured K field of moderate magnitude, whereas the SGS realizations have small local simulation errors in the measured K fields, with high and low values. The OK realization of K can be applied to perform a deterministic inverse calibration. The mean SGS method is suggested for constructing a K field when the application focuses on extreme values of estimated parameters and small calibration errors, such as in a simulation of contaminant transport in heterogeneous aquifers. The individual SGS realization is useful in stochastically assessing the spatial uncertainty of highly heterogeneous aquifers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The spatial distribution of the hydraulic conductivity κ is modelled by a power law, and we present a methodological approach to quantify the exponent (crowding index) of such a law as detected within a well‐type flow configuration. Based upon the outcome of several pumping tests conducted into a caisson (mesoscale), we identify the crowding index as function of the volumetric flow rate. Hence, we develop a simple (although approximated) procedure to assess whether the spatial distribution of κ can be characterized by a power law. We demonstrate that, even at the mesoscale, the conductivity κ can not be regarded as a formation's property (nonlocality), in agreement with the recent developments on the theory of flows into radial configurations.  相似文献   

14.
Although widely used in wetland hydrological studies, hydraulic conductivity (K) estimates from piezometer slug tests are often of questionable validity. Frequently, this is because insufficient attention is paid to the details of the test procedure. Further, in a potentially heterogeneous and anisotropic medium such as peat, the use of slug tests is prone to error. In this paper we address some of the methodological issues surrounding piezometer slug tests in peat. We compare slug test data with laboratory determinations of vertical and horizontal K obtained using a new method. Piezometers were installed at three depths in a floodplain fen peat in Norfolk, UK. Slug tests were initiated by both slug insertion and slug withdrawal, and repeat tests were conducted to examine the robustness of our K estimates. Most of the tests displayed departures from the log‐linear model of Hvorslev, the form of departure being consistent with compressible soil behaviour. The results suggest that insertion tests gave similar results to those initiated by withdrawal. Repeat testing showed that withdrawal data, in particular, gave highly reproducible normalized responses that were independent of the initial head. Values for K estimated using the slug tests were in the range 1 × 10−4 to 1·6 × 10−3 cm s−1, which is towards the upper end of the range reported for peats generally. Laboratory tests yielded similar values of K to those obtained from the slug tests. Although the laboratory tests showed that the peat was anisotropic, the K values generated by slug testing proved relatively good estimates of both vertical and horizontal K. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The unconditional stochastic studies on groundwater flow and solute transport in a nonstationary conductivity field show that the standard deviations of the hydraulic head and solute flux are very large in comparison with their mean values (Zhang et al. in Water Resour Res 36:2107–2120, 2000; Wu et al. in J Hydrol 275:208–228, 2003; Hu et al. in Adv Water Resour 26:513–531, 2003). In this study, we develop a numerical method of moments conditioning on measurements of hydraulic conductivity and head to reduce the variances of the head and the solute flux. A Lagrangian perturbation method is applied to develop the framework for solute transport in a nonstationary flow field. Since analytically derived moments equations are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. Instead of using an unconditional conductivity field as an input to calculate groundwater velocity, we combine a geostatistical method and a method of moment for flow to conditionally simulate the distributions of head and velocity based on the measurements of hydraulic conductivity and head at some points. The developed theory is applied in several case studies to investigate the influences of the measurements of hydraulic conductivity and/or the hydraulic head on the variances of the predictive head and the solute flux in nonstationary flow fields. The study results show that the conditional calculation will significantly reduce the head variance. Since the hydraulic head measurement points are treated as the interior boundary (Dirichlet boundary) conditions, conditioning on both the hydraulic conductivity and the head measurements is much better than conditioning only on conductivity measurements for reduction of head variance. However, for solute flux, variance reduction by the conditional study is not so significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号