首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Current drug treatment available for neuropathic pain (NP) provides meager and partial pain relief due to incomplete efficacy and dose-dependent adverse effect. Hence, combination therapy can provide prolongation in analgesic effect with milder side effects. The present investigation aimed at observing the effects of sildenafil (SD) on Fluoxetine (FLX) in attenuation of chronic constriction injury (CCI) induced NP in rats. CCI was achieved in rats by placing four loose ligations around the sciatic nerve and rats were received respective treatments on SD and FLX till 14 days further behaviors parameters like heat hyperalgesia and allodynia, pin prick and acetone drop test were executed in order to access thermal, mechanical and cold allodynia, respectively, on a predetermined time interval. On the 21st day the animals were sacrificed for determination of total protein, myeloperoxidase activity in the adjoining muscular tissues while glutathione and TNF-α in the sciatic nerve. Co-administration of SD + FLX + CCI gave the pronounced effect that was superior over individual responses of SD and FLX in all behavioral as well as biochemical parameters. It was observed that attenuation in the altered behavioral pattern of CCI induced rats was modified prominently from 3rd day only in a group of rats treated with SD + FLX + CCI. The whole study was finally supported by histopathological results. Finally, it was concluded that SD produces an additive effect when given with FLX in attenuation of NP may be due to elevation in the level of intracellular concentrations of cyclic guanosine monophosphate which further causes downregulation of calcium channel.  相似文献   

2.
3.
Recent evidence demonstrates that peripheral immune cells contribute to the nociceptive hypersensitivity associated with neuropathic pain by infiltrating the central nervous system (CNS). We have recently developed a rat model of graded chronic constriction injury (CCI) by varying the exposure of the sciatic nerve and control non-nerve tissue to surgical placement of chromic gut. We demonstrate that splenocytes can contribute significantly to CCI-induced allodynia, as adoptive transfer of these cells from high pain donors to low pain recipients potentiates allodynia (P < 0.001). The phenomenon was replicated with peripheral blood mononuclear cells (P < 0.001). Adoptive transfer of allodynia was not achieved in sham recipients, indicating that peripheral immune cells are only capable of potentiating existing allodynia, rather than establishing allodynia. As adoptively transferred cells were found by flow cytometry to migrate to the spleen (P < 0.05) and potentiation of allodynia was prevented in splenectomised low pain recipients, adoptive transfer of high pain splenocytes may induce the migration of host-derived immune cells from the spleen to the CNS as observed by flow cytometry (P < 0.05). Importantly, intrathecal transfer of CD45+ cells prepared from spinal cords of high pain donors into low pain recipients led to potentiated allodynia (P < 0.001), confirming that infiltrating immune cells are not passive bystanders, but actively contribute to nociceptive hypersensitivity in the lumbar spinal cord.  相似文献   

4.
ABSTRACT

Objective: To explore the potential regulation mechanisms of miR-384-5p in Neuropathic pain (NP).

Methods: Rat model of chronic constriction injury (CCI) was established to induce NP in vivo. NP levels were assessed using Withdrawal Threshold (PWT) and Paw Withdrawal Latency (PWL). qPCR and Western blotting were used to determine the relative expression of miR-384-5p and SCN3A. The inflammation response in spinal microglia cells was determined by ELISA assay. Immunofluorescence assay was used to demonstrate the co-localization of miR-384-5p with SCN3A in rat dorsal root ganglions (DRGs). The target genes of miR-384-5p were verified by dual-luciferase report assays.

Results: In the current study, the miR-384-5p expression level was significantly downregulated in CCI rats when comparing to the sham group. In addition, miR-384-5p agomir significantly repressed mechanical allodynia and heat hyperalgesia in CCI rats. Meanwhile, the current study indicated miR‐384‐5p could decrease inflammation progress in spinal microglia cells incubated in lipopolysaccharide. Consistently, overexpression of miR-384-5p obviously depressed inflammation cytokine levels in CCI rats. Dual-luciferase reporter assays indicated that SCN3A is a target gene of miR-384-5p.

Conclusion: miR-384-5p is a negative regulator in the development of neuropathic pain by regulating SCN3A, indicating that miR-384-5p might be a promising therapeutic target in the treatment of neuropathic pain.

Abbreviations: CCI: Chronic constriction injury; ZEB1: Zinc finger E box binding protein-1; MAPK6: Mitogen-activated protein kinase 6; COX-2: cyclooxygenase-2.  相似文献   

5.
The medial prefrontal cortex (mPFC) is critical for selecting and shaping complex behavioral responses. In rodent models of neuropathic pain there is evidence for both structural and functional changes in the mPFC. Brain derived neurotrophic factor (BDNF) plays a critical role in the normal functioning of the mPFC. It has been suggested that the disruption of complex behaviors and mood seen in some neuropathic pain patients is mediated in part by alterations of BDNF in this cortical region. In Sprague‐Dawley rats, mPFC levels of BDNF and TrkB mRNA and protein, were quantified and compared to controls (n = 24) 6 days after either: (a) halothane (1.5%) anaesthesia (n = 12), (b) sham surgery under halothane (n = 12), (c) sciatic nerve chronic constriction injury under halothane (n = 48). The social behaviors of the rats were quantified daily during the experimental period. Halothane anaesthesia increased BDNF and TrkB mRNA bilaterally. These increases were reversed in rats that underwent sham surgical and nerve injury procedures. Further, halothane anaesthesia, surgical procedures, and nerve injury each decreased BDNF protein levels. These results reveal a marked and distinct BDNF expression profile in the mPFC of rats that have undergone each stage of the procedure to produce neuropathic pain by chronic constriction injury of the sciatic nerve. The highly sensitive nature of neurotrophic signalling to general anaesthesia in the mature neuronal circuit of the adult rat brain highlights the importance of careful evaluation and interpretation of data evaluating the effects of experimental procedures on neural substrates.  相似文献   

6.
Painful peripheral neuropathies have been associated with a reorganization of skin innervation. However, the detailed changes in skin innervation by the different afferent fiber types following a neuropathic nerve injury have never been characterized in an animal model of neuropathic pain. Our objective was to thoroughly characterize such changes in the thick skin of the foot in a well-established rat model of neuropathic pain, namely, the chronic constriction injury (CCI) of the sciatic nerve. We used the immunofluorescence detection of calcitonin gene-related peptide (CGRP), purinergic receptor P2X3, and NF200 as markers of peptidergic nociceptive fibers, nonpeptidergic nociceptive C fibers, and myelinated afferents, respectively. We observed that CCI-operated animals developed significant mechanical allodynia and hyperalgesia as well as thermal hyperalgesia. At 3 days following nerve injury, all CCI-operated animals had a significant decrease in the density of fibers immunoreactive (IR) for CGRP, P2X3, and NF200 within the upper dermis. A recovery of CGRP-IR fibers occurred within 4 weeks of nerve injury and sprouting above control levels was observed at 16 weeks. However, the myelinated (NF200-IR) fibers never recovered to control levels within a period of 16 weeks following nerve injury. Interestingly, the P2X3-IR fibers took considerably more time to recover than the CGRP-IR fibers following the initial loss. A loss in P2X3-IR fibers persisted to 16 weeks and recovered to levels above that of control at 1.5 years following nerve injury. Further studies are required to clarify the relevance of these innervation changes for neuropathic pain generation and maintenance.  相似文献   

7.
Neuropathic pain is one of the most inextricable problems encountered in clinics, because few facts are known about its etiology. Nerve injury often leads to allodynia and hyperalgesia, which are symptoms of neuropathic pain. The aim of this study was to understand some molecular and electrophysiological mechanisms of neuropathic pain after chronic constriction of the saphenous nerve (CCS) in mice. After surgery, CCS mice displayed significant allodynia and hyperalgesia, which were sensitive to acute systemic injection of morphine (4 mg/kg), gabapentin (50 mg/kg), amitriptyline (10 mg/kg), and the cannabinoid agonist WIN 55,212-2 (5 mg/kg). These behavioral changes were accompanied after surgery by an increase of c-Fos expression and by an overexpression of mu-opioid and cannabinoid CB1 and CB2 receptors in the spinal cord and the dorsal hind paw skin. In combination with the skin-nerve preparation, this model showed a decrease in functional receptive fields downstream to the injury and the apparition of A-fiber ectopic discharges. In conclusion, CCS injury induced behavioral, molecular, and electrophysiological rearrangements that might help us in better understanding the peripheral mechanisms of neuropathic pain. This model takes advantage of the possible use in the future of genetically modified mice and of an exclusively sensory nerve for a comprehensive study of peripheral mechanisms of neuropathic pain.  相似文献   

8.
Sodium-potassium-chloride cotransporter 1 (NKCC1) and potassium-chloride cotransporter 2 (KCC2) are associated with the transmission of peripheral pain.We investigated whether the increase of NKCC1 and KCC2 is associated with peripheral pain transmission in dorsal root ganglion neurons.To this aim,rats with persistent hyperalgesia were randomly divided into four groups.Rats in the control group received no treatment,and the rat sciatic nerve was only exposed in the sham group.Rats in the chronic constriction injury group were established into chronic constriction injury models by ligating sciatic nerve and rats were given bumetanide,an inhibitor of NKCC1,based on chronic constriction injury modeling in the chronic constriction injury + bumetanide group.In the experiment measuring thermal withdrawal latency,bumetanide (15 mg/kg) was intravenously administered.In the patch clamp experiment,bumetanide (10 μg/μL) and acutely isolated dorsal root ganglion neurons (on day 14) were incubated for 1 hour,or bumetanide (5 μg/μL) was intrathecally injected.The Hargreaves test was conducted to detect changes in thermal hyperalgesia in rats.We found that the thermal withdrawal latency of rats was significantly decreased on days 7,14,and 21 after model establishment.After intravenous injection of bumetanide,the reduction in thermal retraction latency caused by model establishment was significantly inhibited.Immunohistochemistry and western blot assay results revealed that the immune response and protein expression of NKCC1 in dorsal root ganglion neurons of the chronic constriction injury group increased significantly on days 7,14,and 21 after model establishment.No immune response or protein expression of KCC2 was observed in dorsal root ganglion neurons before and after model establishment.The Cl^– (chloride ion) fluorescent probe technique was used to evaluate the change of Cl^– concentration in dorsal root ganglion neurons of chronic constriction injury model rats.We found that the relative optical density of N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (a Cl^– fluorescent probe whose fluorescence Cenintensity decreases as Cl– concentration increases) in the dorsal root ganglion neurons of the chronic constriction injury group was significantly decreased on days 7 and 14 after model establishment.The whole-cell patch clamp technique revealed that the resting potential and action potential frequency of dorsal root ganglion neurons increased,and the threshold and rheobase of action potentials decreased in the chronic constriction injury group on day 14 after model establishment.After bumetanide administration,the above indicators were significantly suppressed.These results confirm that CCI can induce abnormal overexpression of NKCC1,thereby increasing the Cl^– concentration in dorsal root ganglion neurons;this then enhances the excitability of dorsal root ganglion neurons and ultimately promotes hyperalgesia and allodynia.In addition,bumetanide can achieve analgesic effects.All experiments were approved by the Institutional Ethics Review Board at the First Affiliated Hospital,College of Medicine,Shihezi University,China on February 22,2017 (approval No.A2017-169-01).  相似文献   

9.
In the context of Alzheimer's disease (AD), hippocampal alterations have been well described in advanced stages of the pathology, when amyloid deposition, inflammation and glial activation occur, but less attention has been directed to studying early brain and behavioral changes. Using an animal model of AD, the transgenic PDAPP‐J20 mouse at 5 months of age, when no amyloid plaques are present and low cerebral levels of amyloid peptides are detectable, we found structural, morphological, and cellular alterations in the hippocampus. Young transgenic mice showed a reduced hippocampal volume with less number of pyramidal and granular neurons, which additionally exhibited cell atrophy. The neurogenic capability in this zone, measured as DCX+ cells, was strongly diminished and associated to alterations in cell maturity. A decrease in presynaptic synaptophysin optical density was detected in mossy fibers reaching CA3 subfield but not in Golgi stained‐ CA1 dendritic spine density. Employing confocal microscopy and accurate stereological tools we also found a reduction in the number of GFAP+ cells, along with decreased astrocyte complexity, suggesting a potential detriment of neural support. According with untimely neuroglial alterations, young PDAPP mice failed in the novel location recognition test, that depends on hippocampal function. Moreover, multivariate statistical analysis of the behavioral outcome in the open‐field test evidenced an elevated anxiety score in Tg mice compared with age‐matched control mice. In line with this, the transgenic group showed a higher number of c‐Fos+ nuclei in central and basolateral amygdala, a result that supports the early involvement of the emotionality factor in AD pathology. Applying an integrative approach, this work focuses on early structural, morphological and functional changes and provides new and compelling evidence of behavioral alterations that precede manifest AD. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
A new model for mouse global ischemia is presented, and the relationship of ischemia duration, cerebral vasculature, and ischemic neuronal injury has been determined. CD-1 mice anesthetized by chloral hydrate were subjected to global ischemia by bilateral common carotid artery occlusion under controlled ventilation for 3, 5, and 10 min. After evaluating the patency of the posterior communicating artery (PcomA) as hypoplastic or normoplastic, neuronal injury was independently determined in the striatum, cortex, and hippocampus in each hemisphere. Ischemic injury was strongly correlated with not only ischemia duration, but also with the patency of the PcomAs. Furthermore, neuronal injury developed in a delayed fashion after 3-min ischemia, while it was maximized at 24 h after 10-min ischemia. Physiological studies showed the induction of slight hypotension as compared with inhalation anesthesia, and improvement of blood gas data relative to spontaneous respiration. These data demonstrate the usefulness of this method to induce selective vulnerability and delayed neuronal cell death in mice, and to provide a useful model to study the detailed mechanism of global ischemia using transgenic or knockout mutant mice.  相似文献   

11.
《中国神经再生研究》2016,(12):2018-2024
Tuina is a traditional Chinese treatment for sensory disturbances caused by peripheral nerve injury and related diseases. Our previous studies showed that tuina regulates relevant regions and indices of the spinal dorsal horn using the Dian, Bo, and Rou method in Yinmen(BL37), Yanglingquan(GB34), and Weizhong(BL40). Treatment prevents muscle atrophy, protects spinal cord neurons, and promotes sciatic nerve repair. The mechanisms of action of tuina for treating peripheral nerve injury remain poorly understood. This study established rat models of sciatic nerve injury using the crushing method. Rats received Chinese tuina in accordance with the principle of Three Methods and Three Points, once daily for 20 days. Tuina intervention reduced paw withdrawal latency and improved wet weight of the gastrocnemius muscle, as well as promoting morphological recovery of sciatic nerve fibers, Schwann cells, and axons. The protein expression levels of phospho-p38 mitogen-activated protein kinase, tumor necrosis factor-α, and interleukin-1β also decreased. These findings indicate that Three Methods and Three Points promoted morphological recovery and improved behavior of rats with peripheral nerve injury.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号