首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
A new polystyrene-divinylbenzene resin containing 1-(2-thiazolylazo)-2-naphthol (TAN) functional group was synthesized and its sorption behavior for 19 metal ions including Zr(IV), Hf(IV) and U(VI) was investigated by batch and column experiments. The chelating resin showed a high sorption affinity for Zr(IV) and Hf(IV) at pH 2. Some parameters affecting the sorption of the metal ions are detailed. The breakthrough and overall capacities were measured under optimized conditions. The overall capacities of Zr(IV) and Hf(IV) that were higher than those of the other metal ions were 0.92 and 0.87 mmol/g, respectively. The elution order of metal ions at pH 4 was evaluated as: Zr(IV)>Hf(IV)>Th(IV)>V(V)>Nb(V)>Cu(II)>U(VI)>Ta(V)>Mo(VI)>Cr(III)>Sn(IV)>W(VI). Quantitative recovery of most metal ions except Zr(IV) was achieved using 2 M HNO3. Desorption and recovery of Zr(IV) was successfully performed with 2 M HClO4 and 2 M HCl.  相似文献   

2.
Summary The properties and behaviour of the hydroxamic acid resin have been studied and shown to be an highly selective resin for molybdenum(VI), tungsten(VI), uranium(VI) and vanadium(V) ions. The stability constants of these metal ion complexes with the resin have been determined. The sorption and desorption characteristics of these metal ions on this resin and the methods for the separation of these metal ions from each other on a short column of such resin were also developed.
Komplexierungsverhalten von makroretikularem Hydroxamsäureharz gegenüber Molybdän(VI), Wolfram(VI), Uran(VI) und Vanadium(V)
Zusammenfassung Die Eigenschaften und das Verhalten von Hydroxamsäureharz wurden untersucht. Das Harz erwies sich als hochselektiv für Mo(VI), W(VI), U(VI) und V(V). Die Stabilitätskonstanten der Komplexe wurden bestimmt, die Sorptions- und Desorptionscharakteristica wurden untersucht und Trennungsmethoden für die genannten Ionen an einer kurzen Säule entwickelt.
  相似文献   

3.
The sorption processes of uranium(VI), copper, cobalt, and strontium by the native soil were studied. It was shown that, by their ability to be accumulated by the podsolized soil, these metals are arranged in the following sequence: U(VI) > Cu > Co > Sr. This selectivity sequence is retained during the sorption of metals from mixed solutions containing their equimolar concentrations. The possibility of the leaching of the studied metals from the contaminated soil by Basillus cereusVKM 4368 metal-resistant culture was demonstrated using glucose and sodium acetate as the sources of carbon and energy. In the first case, 90–99% of heavy metals was extracted from the soil as water-soluble citrate complexes. In the second case (during the metabolism of acetate by bacteria), the removal of heavy metals from the soil as hydroxide–carbonate precipitates and complexes was equal to 80–90%. Sedimentation of particles in the soil suspension is accelerated considerably after the treatment by the metal-resistant culture.  相似文献   

4.
Ghosh JP  Das HR 《Talanta》1981,28(4):274-276
A macroreticular polystyrene-based chelating ion-exchanger containing 1-nitroso-2-naphthol as the functional group has been synthesized. The exchange-capacity of the resin for a number of metal ions such as copper(II), iron(III), cobalt(II), nickel(II), palladium(II) and uranium(VI) as a function of pH has been determined. The sorption and elution characteristics for palladium(II) and uranium(VI) have been thoroughly examined with a view to utilizing the resin for separation and concentration of uranium and palladium. Uranium(VI) has been separated from a mixture of ten other metal ions by sorption on the chelating resin and selective elution with 0.5M sodium carbonate. Palladium(II) has been separated from various metal ions by selective sorption on the resin in 1M hydrochloric acid medium.  相似文献   

5.
Chelex-100, in the anionic form has been studied for its ability to perform selective separation and concentration of some metal ions of nuclear importance from mineral acid solutions. The sorption behavior of Zr(IV)–Nb(V), Mo(VI), Tc(VII), Te(IV) and U(VI) from solutions of hydrochloric and sulphuric acids on Chelex-100 has been studied under static and dynamic conditions. Mo(VI) and Tc(VII) have been concentrated on the resin from hydrochloric or sulphuric acid solutions at low acidities probably, as the anions MoO 4 2– and TcO 4 , respectively. Te(IV) has been isolated from hydrochloric acid solutions of normalities 6 in the form of the anionic chloro complex TeCl 6 2– . Optimum conditions for elution and separation of Mo(VI), Tc(VII), Te(IV) and U(VI) were recommended.  相似文献   

6.
U(VI) sorption from nitric media using Cyanex272 impregnated on Amberlite XAD-2 resin has been studied using batch method. The influence of different experimental parameter such as aqueous acidity, effect of time, influence of eluting agents on U(VI) uptake was evaluated. The maximum sorption capacity of 0.168?mmol?g?1 of U(VI) evaluated based upon these studies. Sorption of U(VI) follows both the Langmuir and Freundlich adsorption isotherms.  相似文献   

7.
A new chelating polymeric sorbent has been developed using polystyrene resin grafted with ethylenediamino tris(methylenephosphonic) acid. After characterisation by FTIR and elementary analysis, the new grafted resin has been investigated in liquid–solid extraction of uranium(VI). The influence of analytical parameters including pH, amount of resin, metal ion concentration, sample volume and ionic strength were investigated on the recovery of U(VI). Adsorption kinetic and isotherm studies were also carried out to understand the nature of the sorption of uranium(VI) by the resin. The total sorption capacity was found to be 41.76 mg/g under optimum conditions. The total desorption of the sorbed uranium ions was successfully performed with 0.1 M ammonium carbonate. Further, the effect of temperature was realized and the thermodynamic parameters were calculated.  相似文献   

8.
Grabarczyk M  Koper A 《Talanta》2011,84(2):393-399
A differential pulse adsorptive stripping voltammetric method has been developed for molybdenum trace determination in environmental water samples containing organic compounds. It was proved that interferences from the organic matrix such as surface active substances and humic substances could be removed by the addition of resin to the analysed sample prior to voltammetric measurement. The parameters for Mo(VI) determination in the presence of resin, using a hanging mercury drop as the working electrode, were examined systematically for two complexing agents: cupferron and chloranilic acid. The detection limits estimated from 3 times the standard deviation for a low Mo(VI) concentrations were equal to 5 × 10−11 and 3 × 10−10 mol L−1 for cupferron and chloranilic acid, respectively. At the optimized conditions the quantitative Mo(VI) determination in the presence of even 50 mg L−1 of surface active compounds can be performed. The proposed procedures were validated in the course of Mo(VI) determination in certified reference material NASS-5 and in the course of studying recovery of Mo(VI) from spiked river water samples.  相似文献   

9.
Praveen RS  Metilda P  Daniel S  Rao TP 《Talanta》2005,67(5):960-967
A new chelating polymeric sorbent has been developed using Merrifield chloromethylated resin anchored with quinoline-8-ol (HQ). The modified polymeric resin was characterized by FT-IR spectroscopy and elemental analysis. The HQ anchored resin showed superior binding affinity for U(VI) over Th(IV) and La(III). The influence of various physicochemical parameters on the recovery of U(VI) were optimized by both static and dynamic methods. The phase exchange kinetic studies performed for U(VI) revealed that <5 min was sufficient for reaching equilibrium metal ion sorption. The maximum sorption capacity of HQ anchored resin for U(VI) was found to be 120.30 mg g−1 of resin which is higher than other solid phase extraction sorbents reported so far excepting N,N-dibutyl, N′-benzoyl thiourea sorbed Amberlite XAD-16. The developed HQ anchored polymeric resin is highly selective as none of the extraneous species were found to have any deleterious effect. Solid phase extraction (SPE) studies performed using HQ anchored polymeric resin offered enrichment factor of 100 and the lowest concentration below which recoveries become non-quantitative is 5 μg l−1. The accuracy of the developed SPE method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA–Soil 7) reference materials. Furthermore, the above procedure has been successfully employed for the analysis of real soil and sediment samples.  相似文献   

10.
Summary The thin-layer chromatographic behavior of 49 inorganic ions on polyethyleneimine (PEI) cellulose, a weakly basic anion-exchanger, has been systematically studied in sulfuric acid and ammonium sulfate media (both 0.01–1.0 moldm−3). The sorption on the cellulose decreases with increasing concentration of the acid or sulfate for most of the ions and to a lesser extent for Hg(II), Bi(III), Th(IV), Nb(V), and U(VI). The Rf values of Pd(II), Ru(III), Au(III), Pt(IV), and Ta(V) are extremely low in both systems. Ba(II), Pb(II), Sb(III), Mo(VI), and W(VI) are also strongly retained on the layer. Oxy-anions such as As(III) and Se(VI) are not adsorbed on the cellulose to any great extent, but Re(VII) distributes on the plate with a Rf value of about 0.5. The characteristic retention on PEI-cellulose layer of several polyvalent ions, which form anionic sulfato complexes, can be observed in ammonium sulfate media. Possibilities for separations of analytical interest are also demonstrated in both systems.  相似文献   

11.
Removal of uranium(VI) ions from acetate medium in aqueous solution was investigated using Lewatit TP260 (weakly acidic, macroporous-type ion exchange resin with chelating aminomethylphosphonic functional groups) in batch system. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The moving boundary particle diffusion model only fits the initial metal adsorption on the resin. The rate constant for the uranium sorption by Lewatit TP260 was 0.441 min−1 from the first order rate equation. The total sorption capacity was found to be 58.33 mg g−1 under optimum experimental conditions. Thermodynamic parameters (ΔH = 61.74 kJ/mol; ΔS = 215.3 J/mol K; ΔG = −2.856 kJ/mol) showed the adsorption of an endothermic process and spontaneous nature, respectively.  相似文献   

12.
Dietz ML  Horwitz EP  Sajdak LR  Chiarizia R 《Talanta》2001,54(6):1173-1184
The preparation and characterization of a new extraction chromatographic resin exhibiting extraordinarily strong retention of hexavalent uranyl ion over a wide range of nitric acid concentrations and very high selectivity for U(VI) over Fe(III) and numerous other cations is described. This new material (designated U/TEVA-2) comprises a novel liquid stationary phase consisting of an equimolar mixture of diamyl amylphosphonate (DA[AP]) and Cyanex 923® (a commercially available trialkyl-phosphine oxide, TRPO) sorbed on silanized silica or Amberchrom CG-71. Cyanex 923 is shown to be preferable to a related TRPO, Cyanex 925®, due to its lower viscosity and higher selectivity for U(VI) over Fe(III). The retention of uranyl nitrate by the U/TEVA-2 resin, as measured by the k′ values (number of free column values to peak maximum) is >5000 from approximately 0.1 to 8 M HNO3. The ability of the new resin to strongly and selectively retain U(VI) from such a wide range of acid concentrations, along with its favorable physical properties, make it a good candidate for application in the separation and preconcentration of U(VI) from complex environmental, biological, and nuclear waste samples for subsequent determination.  相似文献   

13.
T. Shimizu  S. Abe 《Chromatographia》1986,21(12):708-710
Summary The thin-layer chromatographic behavior of 49 inorganic ions on polyethyleneimine (PEI) cellulose has been investigated in hydrochloric acid media (0.01–1.0 mol dm−3). The sorption on the cellulose decreases with increasing acid concentration for most of the ions, but As(III), Ti(IV) and Te(VI) do not exhibit any Rf variation with the acid concentration. The Rf spectra of TI(I), Cd(II), Pb(II) and Zn(II) have a maximum. Ag(I), Bi(III), Nb(V), Ta(V), Mo(VI) and W(VI) are retained tightly on the layer, due to either insoluble salt formation or extensive hydrolysis. The extremely low Rf values of Hg(II), Pd(II), Au(III), Ru(III) and Pt(IV) are accounted for by stability of their chlorocomplexes. Re(VII) distributes chromatographically, having moderate Rf values between 0.3 and 0.6, so that the selective separation of Re(VII) from the other ions is feasible.  相似文献   

14.
Lee KH  Oshima M  Motomizu S 《The Analyst》2002,127(6):769-774
A new on-line flow injection (FI) pre-treatment system using a disk-type chelating resin (5 mm diameter, 0.5 mm thickness) was developed for the simultaneous multi-element determination of trace metals in sea-water samples by inductively coupled plasma mass spectrometry (ICP-MS). A chelating resin possessing an iminodiacetate (IDA) functional group was used for the collection of trace elements and the elimination of alkali and alkaline earth metals in highly concentrated salt solution. A 1 ml volume of a sea-water sample (pH 5.5) was applied to the chelating resin disk. Considering the removal efficiency for Ca, 50 mM ammonium acetate buffer solution (pH 5.5) was chosen as a sample carrier. The enriched trace metals were eluted with 0.1 M nitric acid and the eluate flowed into the ICP-MS system. The processing time for one sample was < 6 min (350 s). One of the important observations is the possibility of working with a low recovery, even lower than 50%. For example, several elements such as Mn, Cr, As, Mo, Ba and U, the recovery of which was < 50% in a batch-wise method, showed good linearity and reproducibility. The proposed method was evaluated by analyzing two kinds of sea-water certified reference materials, CASS-4 and NASS-5. Analytical data for eight heavy metals, V, Mn, Co, Ni, Cu, Mo, Cd and U, obtained from the present study agreed well with the certified values.  相似文献   

15.
A simple and sensitive method for the determination of ultra trace amounts of U(VI) and Th(IV) ions by spectrophotometric method after solid-phase extraction on a new extractant-impregnated resin (EIR) has been reported. The new EIR was synthesised by impregnating a weakly polar polymeric adsorbent, Amberlite XAD-7, with titan yellow (TY) as extractant. The analytical method is based on the simultaneous adsorption of analyte ions in a mini-column packed with TY/XAD-7 and performing sequential elution with 0.5% (w/v) Na2CO3 for uranium and 2.0 M HCl for thorium. The influences of the analytical parameters including pH, salting out agent and sample volume were investigated. The interference effects of foreign ions on the retention of the analyte ions were also explored. The limits of detection for U(VI) and Th(IV) were as low as 50 and 25 ng L?1, respectively. Relative standard deviations (n = 7) for U(VI) and Th(IV) were 3.1% and 2.9%, respectively. The method was successfully applied to the determination of ultra trace amounts of U(VI) and Th(IV) in different real matrices including industrial wastewater samples and environmental waters. The proposed method was validated using three certified reference materials and the results were in good agreement with the certified values.  相似文献   

16.
A chitosan resin possessing a phenylarsonic acid moiety (phenylarsonic acid type chitosan resin) was developed for the collection and concentration of trace uranium prior to inductively coupled plasma (ICP) atomic emission spectrometry (AES) measurement. The adsorption behavior of 52 elements was systematically examined by packing it in a minicolumn and measuring the elements in the effluent by ICP mass spectrometry. The resin could adsorb several cationic species by a chelating mechanism, and several oxo acids, such as Ti(IV), V(V), Mo(VI), and W(VI), by an anion-exchange mechanism and/or a chelating mechanism. Especially, U(VI) could be adsorbed almost 100% over a wide pH region from pH 4 to 8. Uranium adsorbed was easily eluted with 1 M nitric acid (10 mL), and the 25-fold preconcentration of uranium was achieved by using a proposed column procedure, which could be applied to the determination of trace uranium in seawater by ICP-AES. The limit of detection was 0.1 ng mL−1 for measurement by ICP-AES coupled with 25-fold column preconcentration.  相似文献   

17.
Geobacillus thermoleovorans subsp stromboliensis, was immobilized on an Amberlite XAD-4 ion exchanger and used as a solid phase extractant for the preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry. Parameters affecting the preconcentration (such as the pH value of the sample solution, the concentration of U(VI), the volume and type of eluent, the flow rate and the effect of potentially interfering ions) were studied. The optimum pH for the sorption of U(VI) was found to be pH 5.0. 5.0?mL of 1 M hydrochloric acid were used to eluate the U(VI) from the column. The loading capacity is 11?mg?g?1. The limits of detection and quantification are 2.7 and 9.0?μg?L?1, respectively, and relative standard deviations are <10?%. The method was applied to the determination of U(VI) in a certified reference sample (NCS ZC-73014; tea leaves) and in natural water samples.
Figure
Schematic presentation of SPE procedure using Geobacillus thermoleovorans subsp stromboliensis immobilized on an Amberlite XAD-4 as ion exchanger for preconcentration of U(VI) ions prior to their determination by UV-VIS spectrophotometry  相似文献   

18.
In this paper, to separation Cs(I) effectively from HLW, a kind of chromatographic rein was synthesized through immobiling calix[4]-bis-crown-6 on the macroporous polystyrene -divinylbenzene polymeric material. The synthesized chromatographic resin showed high ability to absorb Cs(I). While the radioactive elements Pu(III), Np(V), U(VI), Th(IV), as well as all of the fission and non-fission products showed almost no sorption towards chromatographic rein. The separation of Cs from HLW can be realized through adjusting the valence of Np and Pu or adding H2C2O4. All the results showed that the application of the new chromatographic rein to the analysis of HLW is possible.  相似文献   

19.
A chitosan resin functionalized with 3-nitro-4-amino benzoic acid moiety (CCTS-NABA resin) was newly synthesized for the collection/concentration of trace molybdenum by using cross-linked chitosan (CCTS) as base material. The carboxyl group of the moiety was chemically attached to amino group of cross-linked chitosan through amide bond formation. The adsorption behavior of molybdenum as well as other 60 elements on the resin was examined by passing the sample solutions through a mini-column packed with the resin. After the elution of the elements collected on the resin with 1 M HNO3, the eluates were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES).

The CCTS-NABA resin can adsorb several metal ions, such as vanadium, gallium, arsenic, selenium, silver, bismuth, thorium, tungsten, tin, tellurium, copper, and molybdenum at appropriate pHs. Among these metal ions, only molybdenum could be adsorbed almost completely on the resin at acidic regions. An excellent selectivity toward molybdenum could be obtained at pH 3–4. The adsorption capacity of CCTS-NABA resin for Mo(VI) was 380 mg g−1 resin. Through the column pretreatment, alkali and alkaline earth metals in river water and seawater samples were successfully removed.

The CCTS-NABA resin was applied to the adsorption/collection of molybdenum in river water and seawater samples. The concentrations of molybdenum in river water samples were found in the range of 0.84 and 0.95 ppb (ng g−1), whereas molybdenum in seawater was about 9 ppb. The validation of the proposed method was carried out by determining molybdenum in the certified reference materials of SLRS-4, CASS-4, and NASS-5 after passing through the CCTS-NABA resin; the results showed good agreement with the certified values.  相似文献   


20.
S Taguchi  T Inaba  M Nishio  N Hata  I Kasahara  K Goto 《The Analyst》1989,114(4):489-492
The sorption of ion pairs on membrane filters (MFs) has been studied by taking the membrane filter as one of the homogeneous phases. The sorbability of some ionic species and the sorption abilities of different types of MF were evaluated in terms of the sorption constant defined by Ksor,CA = [(C+,A-)f]/[C+][A-], where C+, A- and (C+,A-) refer to the cation, anion and the ion pair, respectively, and f refers to the filter phase. The values of Ksor,CA were determined for many combinations of ionic complexes of cobalt(III) with pyridylazophenols, either as cations or anions, and oppositely charged organic ions having different alkyl chain lengths, with MFs made of different materials: nitrocellulose (NC; Toyo Advantec), acetylcellulose (AC; Fuji Film), regenerated cellulose (RC; Toyo Advantec) and polyethersulphone (PS; Toyo Advantec). For a given cobalt complex ion, the value of log Ksor,CA increased linearly with the increasing number of carbons in the counter ion. Membrane filters made of different materials showed different sorption abilities, the order being NC greater than PS greater than RC greater than AC. It was shown that the surface area of the MF is of greater significance than the volume of the matrix of the MF in determining the sorption constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号