首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
Bituminous rocks in the Ozankoey (Ankara) field are different from those of the Paleocene- Eocene Mengen and Giineytepe (Bolu) regions in metal enrichment levels. Organic carbon (Corg) content of organic material-rich rocks in the Ozankoey (Ankara) field is 3.66-40.72% wt averaging 14.34%. The dominant organic materials are algae/amorphous accompanied by minor amount of herbaceous material (The dominant kerogen type is Type-I with a limited amount of Type-Ⅱ kerogen.). The bituminous rocks in the Ozankoey field are enriched in heavy metals such as Ni, Mn, As and Cr. In comparison with the average enrichment values of dements, Ni, Mn, As and Cr in bituminous shales of the Ozankoey field are as about 4.38, 14.93, 10.90 and 5.58 times as average values. The average concentrations of these heavy metals are also as high as 215× 10^-6, 828 × 10^-6, 58.54 × 10^-6, and 148 × 10^-6 respectively. In addition, sorption properties of day and organic materials are also important for metal enrichments in the bituminous shales.  相似文献   

3.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism.  相似文献   

4.
This paper describes the occurrence of dolomite and the mechanism of dolomitization of the Upper Triassic-Lower Jurassic K?z?loren Formation in the autochthonous Bolkardag? unit of the middle Taurus Mountains in south western Turkey. Dolomites were analyzed for geochemical, isotopic and crystallographic variation. Dolomites occur as a replacement of precursor carbonate and cement. The dolomite crystals range from <10 to ~1000 μm existing as both replacements and cements. Sr concentrations range between 84 and 156 ppm, and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 0.0066 to 0.013 ratios. Dolomites are Ca-rich (with average CaCO3 and MgCO3 equal to 56.43 and 43.57 mol%, respectively) and they are non-stoichiometric, with an average Sr=116 ppm, Na=286 ppm, Mn=81 ppm, Fe=1329 ppm, and δ18O and δ13C ranges from –0.6‰ to –6.1‰ Pee Dee Belemnite [PDB], and +1.2 to +3.9‰ PDB. The North American Shale Composition [NASC]-normalized rare earth element (REE) values of the both limestone and dolomite sample groups show very similar REE patterns characterized by small positive Eu (mean=1.32 and mean=1.42, respectively) and slightly or considerably negative Ce (mean=0.61 and mean=0.72, respectively) anomalies and a clear depletion in all REE species. The K?z?loren Formation dolomites have been formed as early diagenetic from mixing zone fluids at the tidal-subtidal environment and at the late diagenetic from basinal brines at the shallow-deep burial depths.  相似文献   

5.
The Late Cretaceous ükapili Granitoid including mafic microgranular enclaves intruded into metapelitic and metabasic rocks, and overlain unconformably by Neogene ignimbrites in the Ni de area of Turkey. It is mostly granite and minor granodiorite in composition, whereas its enclaves are dominantly gabbro with a few diorites in composition. The ükapili Granitoid is composed mainly of quartz, K-feldspar, plagioclase, biotite, muscovite and minor amphibole while its enclaves contain mostly plagioclase, amphibole, minor pyroxene and biotite. The ükapili Granitoid has calcalkaline and peraluminous (A/CNK= 1.0-1.3) geochemical characteristics. It is characterized by high LILE/HFSE and LREE/HREE ratios ((La/Lu) N = 3-33), and has negative Ba, Ta, Nb and Eu anomalies, resembling those of collision granitoids. The ükapili Granitoid has relatively high 87Sr/86Sr (i) ratios (0.711189-0.716061) and low εNd (t) values (-5.13 to -7.13), confirming crustal melting. In contrast, the enclaves are tholeiitic and metaluminous, and slightly enriched in LILEs (K, Rb) and Th, and have negative Ta, Nb and Ti anomalies; propose that they were derived from a subduction-modified mantle source. Based on mineral and whole rock chemistry data, the ükapili granitoid is H-(hybrid) type, post-collision granitoid developed by mixing/mingling processes between crustal melts and mantle-derived mafic magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号