首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用常规观测资料,NCEP1°×1°再分析资料和卫星云图、多普勒雷达、微波辐射计等多源数据,对2019年8月9日西安东部发生的一次局地短时强降水天气过程进行较为全面的中尺度特征分析。结果表明,小尺度的地面辐合和地形抬升是该次短时强降水的触发及加强条件;台风外围的偏东气流为强降水提供了充足的水汽和不稳定能量,且前期大气层结显示出较强的对流不稳定,有利于短时强降水触发后较大能量的释放并提升降水效率。短时强降水发生阶段监测到明显的干冷空气侵入过程,干冷空气可触发新对流,加强不稳定层结,加快水滴蒸发以增加潜热,从而加强了短时强降水。雷达反射率图上显示西安东部位于蓝田上、下游的对流单体在蓝田县附近形成对峙,并不断合并加强,是造成该地较强短时强降水的主要原因之一。  相似文献   

2.
2016年8月22日夜间,青海省海东地区大部出现短时强降水天气,导致互助、平安等县(区)部分乡镇出现洪涝灾害,给当地群众造成严重损失。利用高空、地面观测、卫星云图、雷达等资料,采用中尺度天气图分析技术,得到预报此类短时强降水的一些依据:(1)短时强降水发生的主要影响系统是西伸到高原东部的副热带高压及自高原北侧移入的的短波槽;地面干线及辐合线也是短时强降水天气的中尺度触发机制。(2)700h Pa青海东部的东南暖湿气流为此次短时强降水提供充沛的水汽来源,并与中高层较干冷的大气形成"上干冷下湿热"的不稳定大气层结。(3)高空强辐散,中低层辐散、辐合交替配置为短时强降水提供了较好的动力条件。(4)短时强降水前期cape值显著增加,达到787.8J/K,cin值显著减小至16.3J/K,抬升指数达到1.69℃;短时强降水发生前6h青海东部有对流云发展,云顶亮温可达196~214K,强降水发生在TBB梯度最大的区域。(5)强降水的时间和落区与雷达CR的强回波区一致,且发生时当地最强CR值达56dBz,VIL值达到10kg.m~(-2)。  相似文献   

3.
本文利用常规地面及高空观测资料、加密自动站资料及多普勒雷达资料等,从环境条件及雷达特征等方面对2019年鸡西市一次极端短时强降水天气进行分析,结果表明:强降水发生在宽广且深厚的西风槽稳定维持背景下,降水区中层有冷空气入侵,低层位于槽前暖湿气流中,一致的西南风输送水汽至降水区。850 hPa槽线是本次对流天气的触发系统,上冷下暖及午后地面温度迅速升高造成热力不稳定,另外,低层绝对水汽含量较高是本次短时暴雨发生的重要条件。从雷达产品上看,麻山区的降水是由多单体风暴形成的,其中包含有超级单体风暴,单体依次经过降水区,强对流过程持续3 h,一定的"列车效应"使其出现了短时暴雨天气。  相似文献   

4.
一次强对流天气及其中短时强降水的成因分析   总被引:2,自引:3,他引:2  
利用常规地面、高空观测资料,自动站资料,NCEP再分析资料,多普勒雷达资料和WRF模式模拟资料等,对2009年6月初晋豫鲁皖苏5省的一次强对流天气及其中短时强降水的形成原因进行了分析。结果表明:本次过程是在高空东北冷涡不断引导冷空气南下,与低层低涡扰动形成冷暖空气汇合的有利天气形势下发生的。边界层内的强烈辐合抬升是触发对流发生和释放对流不稳定能量的主要原因之一。高空有明显的干侵入并叠加在低层高假相当位温的暖湿空气之上,这种较强的位势不稳定形势对本次过程中对流系统的触发提供了有利的条件。对流系统移动方向一侧有较强的风暴相对螺旋度,通过低层辐合上升气流的倾斜作用,使更多的水平涡度转化为垂直涡度,为本次过程的发展、维持以及其短时强降水的发生提供了有利的条件。  相似文献   

5.
利用FY-2E卫星云图、NCEP/NCAR1°×1°逐6 h再分析资料、甘肃省区域自动站资料等,对比分析两次发生在8月中旬及相同气候背景、相同地形条件下的短时强降水天气过程(2014年8月16—17日和2015年8月11—12日)。结果表明:两次强降水天气过程的形成机制有所区别,分别由高空冷平流强迫和低层暖平流强迫造成;高空冷平流强迫造成的短时强降水落区较为分散,低层暖平流强迫造成的强降水落区则更为集中;高空冷平流强迫对抬升条件的要求比低层暖平流强迫低,而低层暖平流强迫引起的垂直速度强度弱于高空冷平流强迫;在大致相同的地形条件下,水汽条件是发生短时强降水的主要因素,在这两次大气环流背景基本相同的情况下,水汽条件好的天气过程雨强更大,短时强降水出现站次也更多。  相似文献   

6.
利用常规天气资料对2007年7月26日德令哈地区出现的一次短时强降水天气过程进行分析表明:冷涡是此次短时强降水过程的主要影响系统,500hPa河套地区的冷涡稳定维持并加强西伸,冷涡西侧的冷空气越过祁连山脉,在海西东部地区形成不稳定层结,是短时强降水的主要动力条件;700hPa热低压维持是此次降水过程的水汽保障。  相似文献   

7.
利用常规天气资料对2008年5月24日海西州茫崖地区一次短时强降水天气进行了分析。结果表明:南部暖湿气流向北输送与西风带低槽分裂东移的冷空气在茫崖交绥,在茫崖地区形成风向风速辐合,此辐合造成强烈的上升运动,是造成这次强降水的主要原因。同时中小尺度天气系统的发展为此次降水提供了水汽、能量和动力条件。  相似文献   

8.
针对2014年6月2日夜间祁连山区出现的短时强降水天气,分析环流背景和物理量场,重点归纳造成此次强降水的主要成因,结果表明:持续几天的高压坝造成的高温、迅速东撤时沿着高压边缘的西南水汽输送和携带冷空气南下短波槽的共同影响是强降水天气发生的必要条件,同时祁连山脉特殊的地理环境阻挡作用,使水汽汇集在祁连山区,为强降水提供了一定的动力条件。  相似文献   

9.
运用高空、地面、自动站、卫星云图、数值预报产品等气象资料对2012年8月16日发生在青海东北部大通和互助两县的短时强降水天气过程做了诊断分析,结果表明:小槽南下东移和副高向高原地区的伸展与北抬为这次短时强降水发生提供了有利的环境场;东移的低空切变线为中尺度对流系统的形成和发展创造了条件;东西两路冷空气相遇迅速抬升暖湿气团是这次短时强降水的主要原因;地形辐合抬升影响和中小尺度涡旋为这次短时强降水天气提供了重要的动力条件。  相似文献   

10.
利用高空地面观测资料、濮阳站多普勒雷达资料和NCEP6h一次的1°×1°再分析资料,从天气形势、物理量分布特征、不稳定能量、雷达回波演变等方面,分析了2009年6月6日新乡夏季一次短时强降水天气过程演变和成因。结果表明:前期中低层受自西南地区延伸的暖舌影响持续增温,有利于不稳定能量的累积,上游高空槽携冷空气东移南下,中低层东北冷涡后部和近地面有冷空气入侵,激发不稳定能量,产生本次强对流天气。分析还发现,低层θse高能区、水汽通量大值区、强辐合上升区等物理量场与强对流天气区有较好的对应关系。  相似文献   

11.
通过对2011年8月15日青藏高原东部边缘出现的一次区域性大雨、局地暴雨天气过程,从环流形势、卫星云图、物理量场诊断等方面进行了分析,发现贝加尔湖至北疆的高空槽东移南压过程中与副高边缘西南暖湿气流在青海东北部交汇是产生这次强降水的主要原因,中尺度对流云团的活动是造成此次局地暴雨的主要原因。  相似文献   

12.
利用1980-2008年Godas的逐月海表面高度(SSH)资料,分析了热带太平洋不同季节海表面高度季节及年际变化特征,并初步探讨了海表面高度异常与ENSO事件的关系。结果表明:1)就赤道地区而言,东太平洋区域海表面最低,西北太平洋和西南太平洋海表面最高,中太平洋区域较浅。2)西北太平洋和西南太平洋海表面高度年际异常大,赤道中东太平洋区域在秋季和冬季的异常较大。3)1、4、10月热带太平洋海表面高度年际异常与ENSO事件有良好对应关系:在El Ni?o事件期间,热带太平洋东部海表面高度增加,西部和西南部减小,不同季节异常区略有区别;7月海表面高度异常与ENSO事件关系不密切。  相似文献   

13.
陈良吕  夏宇 《气象》2024,50(4):407-419
为了加深对川渝地区短时强降水天气的认识,为提高业务预报技巧及改进数值模式提供参考,选取了川渝地区一次短时强降水天气过程,基于对流尺度集合预报系统,开展了目标区域平均降水量对模式初值的集合敏感性分析,并探讨了相应的动力学机制。主要结论如下:敏感区的分布与对目标区域降水起到关键影响作用的系统有较好的对应:850 hPa和700 hPa西南低涡周围的敏感区呈现出正负相间的分布特征,500hPa低压槽左(右)侧为负(正)敏感区,250 hPa高空西南急流区域(南侧)为正(负)敏感区,中低层与锋区前(后)部对应区域为正(负)敏感区。说明西南低涡周围负(正)敏感区的西北(东南)风越强,低压槽左(右)侧西北(东南)风越强,高空急流区域(南侧)西南(东北)风越强以及锋前(后)温度越高(低),则越有利于西南低涡内的辐合上升运动,500 hPa低压槽的加强,250 hPa高空辐散的加强,锋区温度梯度增大以及锋面抬升作用加强等并对目标区域的降水产生正面的影响。  相似文献   

14.
广西一次强降水天气成因初探   总被引:1,自引:1,他引:1  
利用M ICAPS提供的常规资料和卫星资料,对广西一次强降水天气成因以及几家数值预报产品进行初步分析,结果表明,西南涡沿切变线东南移是这次过程的主要原因,数值预报产品对这次过程的预报效果较好,深入数值预报产品的释用研究是提高重大天气预报质量的有效途径。  相似文献   

15.
利用常规气象观测资料、地面加密自动站资料、NCEP 1°×1°再分析资料、卫星及风廓线雷达和多普勒雷达资料,对2016年7月7日夜间湖北宜昌地区一次致灾极端短时强降水过程,从大尺度环流背景、中尺度特征以及地形等方面进行分析。结果表明:这次局地强降水产生于副热带高压边缘的西南暖湿气流中,表现出中低层中尺度动力抬升强、降水效率高、地形作用明显等特点。峡谷入口处地面中尺度涡旋与强垂直风切变相互作用造成强上升运动为强降水提供了充足的动力条件,较弱的引导气流和山体阻挡作用使得局地降水维持时间长,共同造成了此次极端短时强降水的发生。回波的低质心结构提高了降水效率,降水过程中单体的后向传播也使局地累计雨量增大。  相似文献   

16.
文章利用常规气象观测资料,针对巴彦淖尔市2014年5月23日的一次强降水天气过程,分别从形势场、物理量场、单站资料等方面进行了诊断分析。结果表明:(1)高空500h Pa中高纬度天气形势发展为东脊西槽的经向型环流,上游西南引导气流的建立为暖湿气流向北输送提供了条件。700~850h Pa在我市上游形成的冷涡系统并逐步演变为"人字形"切变对强降水的产生起到了决定性作用,同时配合T-Td≤5℃的湿区、上游弱冷平流的进入及下游暖高脊稳定少动,为强降水的产生提供了较好的水汽条件。(2)强降水主要产生于"河套气旋"形成的冷锋前暖锋后,低压带南北向且狭长,为低层辐合高层辐散提供了基础条件。(3)随着上升垂直运动的逐渐加强,散度、涡度相互配合,低层辐合高层辐散作用明显,对强降水的发生提供了动力条件。(4)从河套南部伸向蒙古地区的高能舌,致使河套地区形成了深厚的暖湿气层,这个暖湿气层的存在为强降水储存了潜在的不稳定能量。(5)单站K≥34℃易产生强对流及强降水等天气。  相似文献   

17.
利用NCEP1°×1°的6h再分析资料对2013年延安地区盛夏一次强降水天气过程进行诊断分析。结果表明:暴雨发生时,延安地区上空高层反气旋性涡度,低层气旋性涡度及700hPa以上强烈的上升运动为该地区持续性强降水的发生、发展提供了动力条件。暴雨前期700hPa水汽一部分沿副高外围从南海进入陕西境内,另一部分来自孟加拉湾;暴雨后期延安地区水汽一部分来自孟加拉湾,另一部分来自台风苏力外围的偏东气流。等θse线密集区集中在延安附近,是不稳定能量集中的区域,为延安地区出现强降水提供了充足的能量。  相似文献   

18.
针对强降水天气分析的实际需求,利用地面气象观测站、区域自动气象站逐小时降水资料和NCEP(1°×1°)再分析资料,对2018年6月30—7月3日海西东部区域性强降水天气的成因进行分析。结果表明:此次降水发生在新疆槽底分裂短波槽和高原南部低涡共同作用的有利环流形势下;受盆地地形影响,海西地区冷空气主要有两条移动路径,偏南路径的冷空气到达海西东部的时间较偏北路径早6h左右。短时强降水天气的出现主要取决于地面是否有冷空气活动;海西西部呈反气旋,青海湖南部有低涡活动也可以作为判断短时强降水天气的重要参考指标;强降水发生时段与散度辐合中心和上升运动中心基本对应,降水过程期间底层维持有较强的上升运动;600hPa水汽分布显示海西东部地区在降水期间有三个水汽输送路径,另外当高原东南部有低涡活动时,25°N附近的水汽可以在该低涡东侧东南风的引导下输送至海西东部地区。  相似文献   

19.
利用常规气象观测资料、NCEP/NCAR再分析资料和多普勒天气雷达资料,对2016年8月6—8日潍坊一次强对流天气的成因和预报误差进行了分析,结果表明:1)500 hPa冷涡底部低槽、850 hPa低涡切变线和地面倒槽是主要影响天气系统, 数值预报对此次天气过程的影响系统预报偏差大,而预报员对数值预报依赖程度高是此次预报失误的主要原因;2)850 hPa以下强的水汽辐合是强降水发生的重要条件,低层辐合和高层辐散配置导致的强垂直上升运动是暴雨产生的动力机制,位势不稳定因中高层的冷空气入侵下沉得以加强;3)列车效应和强回波维持少动是造成短时强降水的重要回波特征,逆风区的发展和移动对于判断强降水的落区有指示作用,多普勒雷达反演风场中的中尺度辐合线是导致局地强降水发生的直接原因;4)风廓线雷达水平风场可以连续地反映降水过程中风场垂直结构及其变化,降水发生前探测高度明显升高,中高层冷空气侵入时间与强降水的时段相对应。  相似文献   

20.
2015年8月3日秦岭北麓突发短时强降水,强度之大近年少有,并引发山洪造成人员伤亡。应用高空观测资料、地面加密资料、NCEP再分析资料,并结合风廓线雷达和多普勒天气雷达资料分析发现,此次降水过程具备较好的对流潜势及湿度条件,由冷锋系统触发,冷锋系统结构特点包括:锋区前近地面水汽含量18 g·kg~(-1),锋面上升运动处于下沉运动之上、自由对流高度以下,850 h Pa以下强冷平流造成该层浅薄逆温,锋前出现显著对流不稳定,均为对流性强降水发生创造有利条件。强冷平流带来水平锋生,对流不稳定产生垂直锋生,总体强锋生主要出现在对流层中下层,达到20×10~(-10)K·s~(-1)·m~(-1)。秦岭的阻挡作用使得冷锋过境转为偏西风,并与强降水正反馈形成超低空强西风带。偏西风与迎面山体配合对降水产生增幅作用,并为降水区带来水汽输送,但超低空西风较强容易破坏雷暴单体的垂直结构,又使得降水不能长时间维持。风廓线雷达能够探测到冷锋系统的精细化垂直风场结构,反映了冷锋的垂直结构信息,并较其他气象要素更能提前预判系统发展,具有较强的预报指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号