首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The magnetic properties of ball-milled TbFe2 and TbFe2B were studied by magnetization measurements. X-ray diffraction studies on TbFe2B showed that boron occupied interstitial position in the crystal structure, just as hydrogen did. The value of the saturation magnetization of TbFe2B was found to be smaller than that of TbFe2. This is explained on the basis of a charge transfer between the boron atoms and the 3d band of Fe. The anisotropy of TbFe2B was found to be large compared to that of TbFe2. X-ray diffractograms for the ball milled samples showed that after 80 h of milling, a predominantly amorphous phase was obtained. TbFe2B was found to undergo easy amorphization compared to TbFe2. Magnetization of TbFe2 was found to decrease rapidly with initial milling hours and was found to be constant with further hours of milling. TbFe2B exhibited an anomalous behaviour with an increase in moment with milling hours and this may be due to the segregation of α-Fe.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Metal?organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self‐assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre‐designing or post‐synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.  相似文献   

16.
17.
18.
The impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano‐ to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre‐inspired layered calcium carbonate‐polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced. The extensive diversity of bacterial metabolic abilities and the possibility of genetic engineering allows for the creation of a library of bacterially produced, cost‐effective, and eco‐friendly composite materials.  相似文献   

19.
20.
The search for new materials for tailor‐made applications and new devices involves not only solid‐state chemists, physicists or materials engineers, but also the area molecular and organo‐metallic chemistry, and even biochemistry. This is especially clear in the field of organic–inorganic multifunctional materials, whose design necessitates to investigate new concepts and principles developed in these different disciplines. Here, the authors review the structure‐magnetic property relationships in layered structures, made of organic and inorganic subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号