首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An improved LC-MS/MS method for the determination of semicarbazide in whole egg is described. Waters OASIS-MCX cation exchange purification cartridges increased the sensitivity for analysis by LC-MS/MS. The validation study was carried out according to criteria and requirements of Commission Decision 2002/657/EC for confirmatory analysis and provided the data as follows: The correlation coefficient for the matrix calibration curve, in the range of 0–5 μg kg−1, was r = 0.9968. The detection capability and decision limit, measured according to ISO11843-2, were CCα = 0.20 μg kg−1 and CCβ = 0.25 μg kg−1. Repeatability (CVSr) and within-laboratory reproducibility (CVSwr) determined for the concentration levels of 0.2, 0.5 and 1.0 μg kg−1 SEM ranged from 11.9 to 5.7% and 11.8 to 6.3%, respectively. The validated method was applied to investigate SEM stability in incurred materials (egg homogenates) during long-term storage at −20 °C and 4 °C. The study proved by a two-sampling test that SEM at levels of 17. 7, 1.2, 10.6 and 0.47 μg kg−1 was stable for up to 12 months.  相似文献   

2.
This study examines the application of solid-phase microextraction coupled with high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) for the determination of four phenylurea herbicides (monolinuron, diuron, linuron and neburon) and propanil in groundwater. Direct immersion (DI) SPME was applied using a 60 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber for the extraction of the pesticides from groundwater samples. An AQUASIL C18 column (150 mm × 4.6 mm i.d., 5 μm) was used for separation and determination in HPLC. The method was evaluated with respect to the limits of detection (LODs) and the limits of quantification (LOQs) according to IUPAC. The limits of detection varied between 0.019 μg L−1 and 0.034 μg L−1. Limits of quantification ranged between 0.051 μg L−1 and 0.088 μg L−1. These values meet the recommended limits for individual pesticides in groundwater (0.1 μg L−1) established by the EU. Recoveries ranged between 86% and 105% and relative standard deviation values between 2% and 8%.  相似文献   

3.
Dexamethasone, betamethasone and prednisolone are synthetic glucocorticosteroids authorised for therapeutic use in bovine animals within the European Union. Dexamethasone and betamethasone are used mainly for the treatment of metabolic and inflammatory diseases. Prednisolone is used to treat bovine mastitis. Maximum residue limits (MRLs) of 0.3 μg kg−1 for both dexamethasone and betamethasone and 6.0 μg kg−1 for prednisolone in bovine milk have been established. 6α-Methylprednisolone and flumethasone are not authorised for use in bovine animals and are completely banned in bovine milk. The proposed method is based on deprotenisation of milk using 20% (w/v) trichloroacetic acid. Samples are filtered using glass microfibre filters and subject to clean-up using OASIS HLB solid phase extraction. Separation was achieved on a Hypercarb 100 mm × 2.1 mm × 5 μm column. Mobile phase was: 90/10 acetonitrile/0.1% formic acid in water; flow rate was 600 μL min−1. The method allowed the rapid identification and confirmation of the five glucocorticosteroids according to the criteria laid down in Commission Decision 2002/657/EC. Matrix calibration curves for all compounds were linear in the interval 0.0 MRL to 2.0 MRL with a correlation coefficient (r2) higher than 0.96. Relative recoveries ranged from 97% for betamethasone to 111% for prednisolone. Precision at the MRL ranged from 3.8% for prednisolone to 13.8% for betamethasone. Decision limits, CCα, and detection capability, CCβ have been calculated for all compounds.  相似文献   

4.
This paper reports the assessment of the total mercury (T-Hg) and methylmercury (MeHg) contamination of mussel samples collected by two sampling campaigns from along the coastline of Sardinia (Italy). T-Hg has been determined by a direct mercury analyser (DMA) whereas MeHg has been determined by gas chromatography-mass spectrometry (GC-MS) after acid extraction, and employs a novel NaBPh4 derivatization method. The evaluation of the quality of measurements was carried out by analysing candidate certified reference material (CRM) BCR 710, for MeHg and T-Hg, and CRM IAEA-350 for T-Hg. In the analysed samples, the T-Hg concentrations range from 35 to 115 μg kg−1 and from 40 to 830 μg kg−1, for the two sampling campaigns, respectively, whereas the MeHg concentrations range from l5 to 51 μg kg−1 and from 17 to 116 μg kg−1. Consequently, the MeHg/T-Hg ratios range from 0.33 to 0.91 and from 0.14 to 0.98, respectively. Despite the increasing trend of Hg concentration from the first to the second sampling campaign, the T-Hg concentration of all the samples was much below the 0.5 μg g−1 WHO limit, and the MeHg values ranged between 2.2 and 17.2 μg kg−1, not exceeding the 43.5 μg kg−1 tolerable daily residue level calculated for Italy.  相似文献   

5.
A rapid confirmatory method has been developed and validated for the simultaneous identification, confirmation and quantitation of 11 nitroimidazoles in eggs by liquid chromatography tandem mass spectrometry (LC–MS/MS). The method is validated in accordance with Commission Decision 2002/657/EC and is capable of analysing metronidazole (MNZ), dimetridazole (DMZ), ronidazole (RNZ), ipronidazole (IPZ) and their hydroxy metabolites MNZ-OH, HMMNI (hydroxymethyl, methyl nitroimidazole), IPZ-OH. The method is also capable of analysing carnidazole (CRZ), ornidazole (ORZ), tinidazole (TNZ) and ternidazole (TRZ). MNZ, DMZ and RNZ have been assigned a recommended level (RL) of 3 μg kg−1 by the Community Reference Laboratory (CRL) in Berlin. The developed method described in this study is easily able to detect all the nitroimidazole compounds investigated at this level and below. Egg samples are extracted with acetonitrile, and NaCl is added to help remove matrix contaminants. The acetonitrile extract undergoes a liquid–liquid wash step with hexane; it is then evaporated and reconstituted in mobile phase. The reconstituted samples are analysed by liquid chromatography tandem mass spectrometry (LC–MS/MS). The decision limits (CCα) range from 0.33 to 1.26 μg kg−1 and the detection capabilities (CCβ), range from 0.56 to 2.15 μg kg−1. The results of the inter-assay study, which was performed by fortifying hen egg samples (n = 18) on three separate days, show the accuracy calculated for the various analytes to range between 87.2 and 106.2%. The precision of the method, expressed as %CV values for the inter-assay variation of each analyte at the three levels of fortification (3, 4.5 and 6.0 μg kg−1), ranged between 3.7 and 11.3%. A Day 4 analysis was carried out to examine species variances in eggs from different birds such as duck and quail and investigating differences in various battery and free range hen eggs.  相似文献   

6.
An analytical method has been developed for the simultaneous determination of the following endectocide drugs in milk: ivermectin, abamectin, doramectin, moxidectin, eprinomectin, emamectin and nemadectin. Samples were extracted with acetonitrile, purified with solid-phase extraction on a reversed phase C8, derivatised with N-methylimidazole, trifluoroacetic anhydride and acetic acid to a stable fluorescent derivative, and were further analysed by gradient high performance liquid chromatography (HPLC) on an endcapped reversed phase Supelcosil LC-8-DB. The derivatisation step was mathematically optimised and the method was validated according to the requirements of Commission Decision 2002/657/EC, using fortified raw bovine milk. Mean recovery was between 78 and 98%. The repeatability (CVr) and within-laboratory reproducibility (CVW) ranged from 4.6 to 13.4% and from 6.6 to 14.5%, respectively. Decision limits (CCα) for analytes with MRL values, namely eprinomectin and moxidectin, were determined to be 24.8 and 50.6 μg kg−1, respectively. CCα values for unauthorised endectocides ranged from 0.1 to 0.2 μg kg−1. Due to high acceptability regarding the required criteria and applicability to ovine and caprine milk, giving similar results, this multi-analyte method has been successfully implemented in pharmacokinetic research studies as well as statutory residue monitoring in Slovenia.  相似文献   

7.
《Analytica chimica acta》2004,515(1):55-63
Clenbuterol has been extracted by mixed solid-phase extraction from two biological matrices (bovine hair and urine) and detected by GC/MS (selected ion monitoring (SIM) and full-SCAN modes). The analytical signal has been modelled with univariate and three-way models, namely DTLD, PARAFAC, PARAFAC2, Tucker3 and trilinear PLS. Since clenbuterol is a banned substance a comparative study of the capability of detection (CCβ, X0=0) has been performed as a function of the sample (hair, 74 μg kg−1 and urine, 0.36 μg l−1), the mode in which the signals are monitored (SCAN, 283 μg kg−1 and SIM, 74 μg kg−1) and the statistical model (univariate, 283 μg kg−1 and trilinear PLS, 20.91 μg kg−1). The capability of detection has been calculated as stated in ISO 11843 and Decision 2002/657/EC setting in all cases the probabilities of false positive and of false negative at 0.05.The identification of the mass spectra must be done to confirm the presence of clenbuterol and has been carried out through PARAFAC. The correlation coefficient between the spectra estimated by PARAFAC and the library spectra is 0.96 (hair, SCAN mode) and 1.00 (hair and urine, SIM mode).The Decision 2002/657/EC advocates the use of independent mass fragments to identify banned compounds. These recommendations together with the effect of the number of ions registered on the capability of detection have lead us to select five uncorrelated fragments (86, 243, 262, 264 and 277) from the data set of 210 ions by hierarchical clustering of variables.  相似文献   

8.
Supramolecular solvents are here proposed firstly as extractants in solid sample microextractions. The approach was evaluated by extracting flumequine (FLU) and oxolinic acid (OXO), two widely used veterinary medicines, from fish and shellfish muscle using a supramolecular solvent made up of decanoic acid (DeA) reverse micelles. The antibiotics were extracted in a single step (∼15 min), at room temperature, using 400 μL of solvent. After centrifugation, an aliquot of the extract was directly analyzed by liquid chromatography and fluorescence, without the need of clean-up or solvent evaporation. Contrary to the previously reported methods, both OXO and FLU were quantitatively extracted from fish and shellfish, independently of sample composition. The high extraction efficiencies observed for these antibiotics were a consequence of their amphiphilic character which resulted in the formation of DeA-OXO and DeA-FLU mixed aggregates. The quality parameters of this quantitative method including sensitivity, linearity, selectivity, repeatability, trueness, ruggedness, stability, decision limit and detection capability were evaluated according to the 2002/657/EC Commission Decision. Quantitation limits in the different samples analyzed (salmon, sea trout, sea bass, gilt-head bream, megrim and prawns) ranged between 6.5 and 22 μg kg−1 for OXO and, 5 and 15 μg kg−1 for FLU. These limits were far below the current maximum residue limits (MRLs) set by the European Union (EU) (i.e. 100 and 600 μg kg−1, for OXO and FLU, respectively). The trueness of the method was determined by analyzing a Certified Reference Material (CMR, BCR®-725) consisting of a lyophilised salmon tissue material. Recoveries for fortified samples (50–100 μg kg−1 of OXO and 50–600 μg kg−1 of FLU) and their relative standard deviations were in the intervals 99–102% and 0.2–5%, respectively. The repeatability, expressed as relative standard deviation, was 3.6% for OXO and 2.3% for FLU ([OXO] = [FLU] = 200 μg kg−1 and n = 11).  相似文献   

9.
A capillary zone electrophoresis method with UV detection was developed for the simultaneous detection and quantification of three tetracyclines in chicken meat samples: tetracycline (TC), oxytetracycline (OTC) and doxycycline (DOC). The separation conditions were: a running buffer containing 30 mM sodium phosphate, 2 mM EDTA disodium salt and 2.5% 2-propanol, pH 12.0, a 5 s hydrodynamic injection and a 14 kV separation voltage. Two different clean-up methodologies were employed: solid-phase extraction with C18 cartridges and ion exchange with Amberlite XAD7 resin. Analytes were detected at 360 nm in less than 12 min. LODs ranged from 61 μg kg−1 for OTC to 68 μg kg−1 for DOC with C18 cartridges, and 81 μg kg−1 for DOC to 89 μg kg−1 for TC with Amberlite XAD7 resin. The recoveries for TC, OTC and DOC obtained by both methods were between 85 and 95%, and the peak area repeatability for all of the samples was below 5% in all cases. Twenty-four samples of commercial chicken drumsticks were examined with both clean-up methodologies. In nine cases (37.5%) TC was detected, in a range from 197.8 to 2564.3 μg kg−1, and in seven cases (29.2%) OTC was detected in a range from 83.0 to 2049.3 μg kg−1. DOC was not detected in any of the tested samples. This method would be useful for the routine monitoring of TCs residues in poultry muscle.  相似文献   

10.
A multi-residue method for the determination of organochlorine pesticides in fish feed samples was developed and optimized. The method is based on a cleanup step of the extracted fat, carried out by liquid–liquid extraction on diatomaceous earth cartridge with n-hexane/acetonitrile (80/20, v/v) followed by solid phase extraction (SPE) with silica gel–SCX cartridge, before the identification and quantification of the residues by gas chromatography–triple quadrupole tandem spectrometry (GC–MS/MS). Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), for each pesticide were determined. Instrumental LODs ranged from 0.01 to 0.11 μg L−1, LOQs were in the range of 0.02–0.35 μg L−1, and calibration curves were linear (r2 > 0.999) in the whole range of explored concentrations (5–100 μg L−1). Repeatability values were in the range of 3–15%, evaluated from the relative standard deviation of six samples spiked at 100 μg kg−1 of fat, and in compliance with that derived by the Horwitz's equation. No matrix effects or interfering substances were observed in fish feed analyses. The proposed method allowed high recoveries (92–116%) of spiked extracted fat samples at 100 μg kg−1, and very low LODs (between 0.02 and 0.63 μg kg−1) and LOQs (between 0.05 and 2.09 μg kg−1) determined in fish feed samples.  相似文献   

11.
Kuan-Hui Lu 《Talanta》2007,72(3):1082-1087
An integrated method of combining solid-phase microextraction (SPME) with liquid chromatography-mass spectrometry (LC-MS) was evaluated for determination trace amount of sulfonamides in meat products. Eight commonly used sulfonamides, sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR), sulfamethazine (SMT), sulfamonomethoxine (SMMX), sulfamethoxazole (SMXZ), sulfaquinoxaline (SQX) and sulfadimethoxine (SDMX), were investigated in this study. Chromatography was performed on a C18 reversed-phase column using an isocratic acetonitrile in water as the mobile phase. Fiber coated with a 65 μm thickness of polydimethylsiloxane/divinylbenzene (PDMS/DVB) was used to extract sulfonamides at optimum conditions. Analytes were desorbed with static desorption in an SPME-HPLC desorbed chamber for 15 min and then determined by LC-MS. The detection limits of these sulfonamides in pork were from 16 μg kg−1 (SMT) to 39 μg kg−1 (SMMX). According to the analysis, the linear range was from 50 to 2000 μg kg−1 with relative standard deviation (R.S.D.s) value below 15% (intra-day) and 19% (inter-day). The proposed method was tested by analyzing meats from a local market for sulfonamides residues. Some sulfonamides in our study were detected in the meat samples. The concentration of these residual sulfonamides ranged from 66 μg kg−1 (SDZ) to 157 μg kg−1 (SQX) in a chicken sample. The results demonstrate that the SPME-LC-MS system is highly effective in analyzing trace sulfonamides in meat products.  相似文献   

12.
A supramolecular solvent consisting of vesicles, made up of equimolecular amounts of decanoic acid (DeA) and tetrabutylammonium decanoate (Bu4NDe), dispersed in a continuous aqueous phase, is proposed for the extraction of benzimidazolic fungicides (BFs) from fruits and vegetables. Carbendazim (CB), thiabendazole (TB) and fuberidazole (FB) were extracted in a single step and no clean-up or concentration of extracts was needed. The high extraction efficiency obtained for BFs was a result of the different types of interactions provided by the supramolecular solvent (e.g. hydrophobic and hydrogen bonds) and the high number of solubilisation sites it contains. Besides simple and efficient, the proposed extraction approach was rapid, low-cost, environment friendly and it was implemented using conventional lab equipments. The target analytes were determined in the supramolecular extract by LC/fluorescence detection. They were separated in a Kromasil C18 (5 μm, 150 mm × 4.6 mm) column using isocratic elution [mobile phase: 60:40 (v/v) 50 mM phosphate buffer (pH 4)/methanol] and quantified at 286/320 nm (CB) and 300/350 nm (TB and FB) excitation/emission wavelengths, respectively. Quantitation limits provided by the supramolecular solvent-based microextraction (SUSME)/LC/fluorescence detection proposed method for the determination of CB, TB and FB in fruits and vegetables were 14.0, 1.3 and 0.03 μg kg−1, respectively, values far below the current maximum residue levels (MRLs) established by the European Union, i.e. 100-2000 μg kg−1 for CB, 50-5000 μg kg−1 for TB and 50 μg kg−1 for FB. The precision of the method, expressed as relative standard deviation, for inter-day measurements (n = 13) was 3.3% for CB (50 μg kg−1), 3.5% for TB (10 μg kg−1) and 2.8% for FB (0.5 μg kg−1) and recoveries for fruits (oranges, tangerines, lemons, limes, grapefruits, apples, pears and bananas) and vegetables (potatoes and lettuces) fortified at the μg kg−1 level were in the interval 93-102%.  相似文献   

13.
Furazolidone has been banned from use in food animals because of its carcinogenicity and mutagenicity, but its continued misuse is widespread in aquacultures. Therefore, there is an urgent need for a simple, reliable, and rapid method for the detection of its marker residue, 3-amino-2-oxazolidinone (AOZ), in aquatic products. In this regard, we modified a simplified indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) to address this need. A good linearity was achieved over a concentration range of 0.05-12.15 μg L−1, and the IC50 value was 0.96 μg L−1. The sample preparation was simple and effective included water bath treatments, acid hydrolysis combined with overnight derivatization of AOZ by benzaldehyde. The limit of detection and the limit of quantification were 0.15 and 0.3 μg kg−1. The recoveries of AOZ in all tissues were between 78.0-95.3% at the levels of 0.3, 1.0, and 2.0 μg kg−1. The inter-assay variability was less than 19.1%. The modified ic-ELISA was applied in quantification of AOZ elimination in carp. The results showed that AOZ was quite difficult to eliminate. Good correlations of the results obtained by ELISA and LC-MS/MS were observed in incurred carp muscle (r = 0.9923) and carp plasma (r = 0.9915) at the levels of 2.5-571.8 μg kg−1 (μg L−1). Better results were obtained by modified ic-ELISA when compared with commercial ELISA kit. Therefore, the present assay is considered a rapid, accurate, reliable, and inexpensive method for the detection of furazolidone-residues in the edible tissues of aquatic animals.  相似文献   

14.
A simple and cost effective sample pre-treatment method, dispersive liquid–liquid microextraction (DLLME), has been developed for the extraction of six fluoroquinolones (FQs) from chicken liver samples. Clean DLLME extracts were analyzed for fluoroquinolones using liquid chromatography with diode array detection (LC-DAD). Parameters such as type and volume of disperser solvent, type and volume of extraction solvent, concentration and composition of phosphoric acid in the disperser solvent and pH were optimized. Linearity in the concentration range of 30–500 μg kg−1 was obtained with regression coefficients ranging from 0.9945 to 0.9974. Intra-day repeatability expressed as % RSD was between 4 and 7%. The recoveries determined in spiked blank chicken livers at three concentration levels (i.e. 50, 100 and 300 μg kg−1) ranged from 83 to 102%. LODs were between 5 and 19 μg kg−1 while LOQs ranged between 23 and 62 μg kg−1. All of the eight chicken liver samples obtained from the local supermarkets were found to contain at least one type of fluoroquinolone with enrofloxacin being the most commonly detected. Only one sample had four fluoroquinolone antibiotics (ciprofloxacin, difloxacin, enrofloxacin, norfloxacin). Norfloxacin which is unlicensed for use in South Africa was also detected in three of the eight chicken liver samples analyzed. The concentration levels of all FQs antibiotics in eight samples ranged from 8.8 to 35.3 μg kg−1, values which are lower than the South African stipulated maximum residue limits (MRL).  相似文献   

15.
The development of a direct competitive enzyme-linked immunosorbent assay (ELISA) based on polyclonal antibodies specific for semicarbazide (SEM) is described. Molecular modelling of the hapten mimics and other key components of the assay system was conducted to explain antibody properties in relation to hapten design. The small aliphatic molecule SEM was coupled to 3-carboxybenzaldehyde to produce carboxyphenyl-SEM (CPSEM), for the generation of specific antibodies. Five rabbits produced antibodies against NPSEM (used in direct and indirect ELISA formats) exhibiting a 50% binding inhibition level (IC50 values) of 0.06-2.28 μg L−1 in assay buffer for SEM. The most sensitive indirect assay based on the antibody MVK39 showed a high dynamic range providing a linear readout in the range of 0.01-0.2 μg L−1. Antibody MVK31 (IgG) allowed specific SEM detection at an IC50 = 0.14 μg L−1 in direct ELISA and was evaluated using solvent extracted SEM-spiked porcine and baby food samples. Recovery levels determined from fortified samples (0.5, 1.0, 1.5, 5, 10 and 20 μg kg−1) of porcine and baby food ranged from 82.9 to 105.3%, respectively, with a coefficient of variation less than 15.5%. Respective detection capability and threshold of the assay for porcine muscle, set on the basis of acceptance of no false negative results, was 0.3 and 0.11 μg kg−1.  相似文献   

16.
《Analytica chimica acta》2004,501(2):193-203
According to the committee decision of 12 August 2002 (2002/657/EC) the capability of detection, CCβ, must be set in all analytical methods not only at concentration levels close to zero but also at the maximum permitted limit (PL). In this work we describe a methodology which evaluates the capability of detection of a fluorescence technique with soft calibration models (bilinear and trilinear PLS) to determine tetracyclines (group B1 substances from annex 1 of Directive 96/23/EC). Its estimation is based on the generalisation of the procedure described in International Union of Pure and Applied Chemistry and in the ISO standard 11843 for univariate signals which evaluates the probabilities of false positive (α) and false negative (β). The capability of detection, CCβ, estimated from the second-order signal and the trilinear PLS model is 9.93 μg l−1 of tetracycline, 17.75 μg l−1 of oxytetracycline and 26.31 μg l−1 of chlortetracycline, setting α and β at 0.05. The capability of detection, CCβ, determined around the PL (100 μg kg−1 in milk and muscle) with the second-order signal is 109.4 μg l−1 of tetracycline, 117.0 μg l−1 of oxytetracycline and 124.9 μg l−1 of chlortetracycline, setting α and β at 0.05. The results were compared with those obtained with zero and first-order signals. The effect of the interferences on the capability of detection was also analysed as well as the number of standards used to build the models and their calibration range.When a tetracycline is quantified in presence of uncalibrated ones by means of the trilinear PLS model the errors oscillate between 14.70% for TC and 9.57% for OTC.  相似文献   

17.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   

18.
An efficient analytical method for simultaneous determination of 12 SFEs in serum is described. The method involves solid-phase extraction to isolate of SFEs from interfering species, especially cholesteryl esters, conversion to trimethylsilyl (TMS) ether derivatives for the direct analysis by gas chromatography–mass spectrometry (GC–MS) using a high temperature MXT-1 (Silcosteel-treated stainless steel) capillary column. All SFEs as their TMS derivatives were well separated with excellent peak shapes within 12 min. Overall recoveries ranged from 88% to 119%, with a detection limits for SFEs ranged from 2 to 30 μg L−1. The linearity as correlation coefficient was higher than 0.99 except for pregnenolone-3-arachidate (r2 = 0.98) in the concentration range of 5–3000 μg L−1. Ten serum samples obtained from volunteers were also analyzed and quantitatively determined of DHEA-3-palmitate and pregnenolone-3-stearate in 1.8–1195.8 μg L−1 concentration. The devised high temperature GC–MS method could be useful for identification of SFEs in biological specimens including serum.  相似文献   

19.
A selective and sensitive isotope dilution–high performance liquid chromatography–linear ion trap mass spectrometry (Isotope Dilution–HPLC–LIT-MS3) method was developed for the simultaneous determination of 19 triazine pesticides and their degradation products in processed cereal samples from Chinese total diet study (TDS). The method integrated the addition of isotope internal standards, liquid–liquid extraction (LLE), clean-up with MCX solid-phase extraction (SPE) cartridges and HPLC–LIT-MS3 analysis with selected reaction monitoring (SRM) mode. Matrix-matched calibration curves showed good linearity (R2 ≥ 0.9940) verified by applying the Mandel's fitting test (p > 0.087) performed at the 95% confidence level. Decision limits (CCαs) and detection capabilities (CCβs) of the 19 triazine pesticides and their degradation products fell in the ranges of 0.0020–0.4200 μg kg−1 and 0.0024–0.4500 μg kg−1, respectively. Recoveries ranged from 70.1% to 112.8%, with the relative standard deviations (RSDs) ranging from 1.5% to 13.5%. Furthermore, the proposed method was applied to analyzing the proposed cereal samples from the fourth Chinese TDS. Eleven triazines were detected in six cereal samples with the concentrations ranging from 0.013 to 0.987 μg kg−1. This method can also be used for the further determination of the triazines in other food group composites, and ultimately served as a methodological foundation for assessing the triazines in the average Chinese diet in the general population.  相似文献   

20.
Semicarbazide (SEM), the marker residue for the banned nitrofuran veterinary antibiotic nitrofurazone (NFZ), has been detected regularly in foods (47% of recent nitrofuran EU Rapid Alerts involve SEM). However, the validity of SEM as a definitive marker for NFZ has been undermined by SEM arising from other sources including azodicarbonamide, a plastics blowing agent and flour treatment additive. An inexpensive screening test for SEM in food matrices is needed—all SEM testing currently uses expensive LC-MS/MS instrumentation. We now report the first production of antibodies against derivatised SEM. A novel carboxyphenyl SEM derivative was used to raise a polyclonal antibody that has been incorporated into a semi-quantitative microtitre plate ELISA, validated according to the criteria set out in Commission Decision 2002/657/EC, for use with chicken muscle. The antibody is highly specific for derivatised SEM, cross-reactivity being 1.7% with NFZ and negligible with a wide range of other nitrofurans and poultry drugs. Samples are derivatised with o-nitrobenzaldehyde and simultaneously protease digested before extraction by cation exchange SPE. The ELISA has a SEM detection capability (CCβ) of 0.25 μg kg−1 when a threshold of 0.21 μg kg−1 is applied to the selection of samples for confirmation (lowest observed 0.25 μg kg−1 fortified sample, n = 20), thus satisfying the EU nitrofurans’ minimum required performance limit of 1 μg kg−1. NFZ-incurred muscles (12) containing SEM at 0.5-5.0 μg kg−1 by LC-MS/MS, all screened positive by this ELISA protocol which is also applicable to egg and chicken liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号