首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-temperature scanning electron microscopy (LTSEM) is limited in resolution and image quality by charging of frozen hydrated samples and collection deficiencies of secondary electron signal contrasts. We measured and corrected both effects using differential hysteresis processing (DHP) of LTSEM images, scanned at 15-bit from 5×4 inch Polaroid negatives. Bulk charging produced a major contrast component equal to 44–87% of the intensity range of the image. The strong charging contrast reduced the local high-resolution signal contrasts to an unrecognizable level. Segmentation and imaging of the unaffected surface contrasts produced high-quality images of high contrast from metal-coated samples as well as from uncoated samples. The differential contrast imaging can be used for control of the sequential etching of ice from the non metal-coated sample as well as improved LTSEM imaging of the finally coated sample.  相似文献   

2.
Oho E 《Scanning》2004,26(3):140-146
Complex hysteresis smoothing (CHS), which was developed for noise removal of scanning electron microscopy (SEM) images some years ago, is utilized in acquisition of an SEM image. When using CHS together, recording time can be reduced without problems by about one-third under the condition of SEM signal with a comparatively high signal-to-noise ratio (SNR). We do not recognize artificiality in a CHS-filtered image, because it has some advantages, that is, no degradation of resolution, only one easily chosen processing parameter (this parameter can be fixed and used in this study), and no processing artifacts. This originates in the fact that its criterion for distinguishing noise depends simply on the amplitude of the SEM signal. The automation of reduction in acquisition time is not difficult, because CHS successfully works for almost all varieties of SEM images with a fairly high SNR.  相似文献   

3.
The mechanisms of electron beam scattering are examined to evaluate its effect on contrast and resolution in high-pressure scanning electron microscopy (SEM) techniques reported in the literature, such as moist-environment ambient-temperature SEM (MEATSEM) or environmental SEM (ESEM). The elastic and inelastic scattering cross-sections for nitrogen are calculated in the energy range 5–25 keV. The results for nitrogen are verified by measuring the ionization efficiency, and measurements are also made for water vapour. The effect of the scattered beam on the image contrast was assessed and checked experimentally for a step contrast function at 20 kV beam voltage. A considerable degree of beam scattering can be tolerated in high-pressure SEM operation without a significant degradation in resolution. The image formation and detection techniques in high-pressure SEM are considered in detail in the accompanying paper.  相似文献   

4.
The scanning electron microscope (SEM) is usually operated with a beam voltage, V0, in the range of 10–30 kV, even though many early workers had suggested the use of lower voltages to increase topographic contrast and to reduce specimen charging and beam damage. The chief reason for this contradiction is poor instrumental performance when V0=1–3 kV, The problems include low source brightness, greater defocusing due to chromatic aberration greater sensitivity to stray fields, and difficulty in collecting the secondary electron signal. Responding to the needs of the semiconductor industry, which uses low V0 to reduce beam damage, considerable efforts have been made to overcome these problems. The resulting equipment has greatly improved performance at low kV and substantially removes the practical deterrents to operation in this mode. This paper reviews the advantages of low voltage operation, recent progress in instrumentation and describes a prototype instrument designed and built for optimum performance at 1 kV. Other limitations to high resolution topographic imaging such as surface contamination, the de-localized nature of the inelastic scattering event and radiation damage are also discussed.  相似文献   

5.
This study has investigated the potential of environmental electron microscopy techniques for studying the structure of polymer‐based electronic devices. Polymer blend systems composed of F8BT and PFB were examined. Excellent contrast, both topographical and compositional, can be achieved using both conventional environmental scanning electron microscopy (ESEM) and a transmission detector giving an environmental scanning transmission electron microscope (ESTEM) configuration. Controllable charging effects present in the ESEM were observed, giving rise to a novel voltage contrast. This shows the potential of such contrast to provide excellent images of phase structure and charge distributions.  相似文献   

6.
A new generation of scanning electron microscopy (SEM) technology is proposed based on the concept of “active image processing.” In order to collect sufficient data for a purpose which is defined in the utilization of active image processing, we may need more devices from among a variety of useful hardware, for example, a digital scan generator with meaningful parameters and an analog-to-digital converter for ultrahigh density recording. After the data acquisition, the application of some digital image processing techniques is certainly effective, because the method in question is specially designed so that the property of obtained data will be suitable for the application of these techniques. The present technology should produce a variety of attractive options in the field of SEM.  相似文献   

7.
Differential voltage contrast (DVC) in conjunction with light and electron beam scanning (LEBEAMS) technique were used for measuring the electric potential, field, and charge distribution in solar cells. The DVC is based on enhancement or retardation of secondary electron emission, generated by an electron beam, due to local changes in the potential of a semiconductor device. The information provided by this technique is invaluable to the development of any device. Solar cells have been studied by the DVC technique, both under electrical bias (DVC) and under illumination (DVC in conjunction with LEBEAMS); however, the conditions of the previous did not replicate the normal illumination conditions of a solar cell. The goal of this research was to redesign and expand the previous LEBEAMS experiments to produce accurate profiles of quasi Fermi energies on solar cells.  相似文献   

8.
A consortium of microorganisms with the capacity to degrade crude oil has been characterized by means of confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The analysis using CLSM shows that Microcoleus chthonoplastes is the dominant organism in the consortium. This cyanobacterium forms long filaments that group together in bundles inside a mucopolysaccharide sheath. Scanning electron microscopy and transmission electron microscopy have allowed us to demonstrate that this cyanobacterium forms a consortium primarily with three morphotypes of the heterotrophic microorganisms found in the Microcoleus chthonoplastes sheath. The optimal growth of Microcoleus consortium was obtained in presence of light and crude oil, and under anaerobic conditions. When grown in agar plate, only one type of colony (green and filamentous) was observed.  相似文献   

9.
Scanning force microscopy was used to study the ultrastructure of eukaryotic ribosomes from Chironomus pallidivittatus in the polysomal complex. Positively stained polysomes were imaged, and the resulting three-dimensional ribosomal structures were further processed by statistical analyses of virtual cross-sections parallel to the substrate plane. Structural investigations were based on parameters which are minimally influenced by the tip geometry, like section plane centre or axis ratio. In the lower part of the structure a shift of the section centres was observed, suggesting an attached structure. The geometry of the sections revealed an elliptical shape in the upper part (axis ratio 1.52 ± 0.22), with a less elongated shape in the lower region (axis ratio 1.41 ± 0.18). A model for the surface topography of a positively stained ribosome exhibiting a small subunit attached along the long side of an elliptical large structure is proposed.  相似文献   

10.
In a scanning electron microscope, electron-beam irradiation of insulators may induce a strong electric field due to the trapping of charges within the specimen interaction volume. On one hand, this field modifies the trajectories of the beam of electrons subsequently entering the specimen, resulting in reduced penetration depth into the bulk specimen. On the other hand, it leads to the acceleration in the vacuum of the emitted secondary electrons (SE) and also to a strong distortion of their angular distribution. Among others, the consequences concern an anomalous contrast in the SE image. This contrast is due to the so-called pseudo-mirror effect. The aim of this work is first to report the observation of this anomalous contrast, then to give an explanation of this effect, and finally to discuss the factors affecting it. Practical consequences such as contrast interpretations will be highlighted.  相似文献   

11.
Backscattered-electron scanning electron microscopy (BSE-SEM) imaging is a valuable technique for materials characterisation because it provides information about the homogeneity of the material in the analysed specimen and is therefore an important technique in modern electron microscopy. However, the information contained in BSE-SEM images is up to now rarely quantitatively evaluated. The main challenge of quantitative BSE-SEM imaging is to relate the measured BSE intensity to the backscattering coefficient η and the (average) atomic number Z to derive chemical information from the BSE-SEM image. We propose a quantitative BSE-SEM method, which is based on the comparison of Monte–Carlo (MC) simulated and measured BSE intensities acquired from wedge-shaped electron-transparent specimens with known thickness profile. The new method also includes measures to improve and validate the agreement of the MC simulations with experimental data. Two different challenging samples (ZnS/Zn(OxS1–x)/ZnO/Si-multilayer and PTB7/PC71BM-multilayer systems) are quantitatively analysed, which demonstrates the validity of the proposed method and emphasises the importance of realistic MC simulations for quantitative BSE-SEM analysis. Moreover, MC simulations can be used to optimise the imaging parameters (electron energy, detection-angle range) in advance to avoid tedious experimental trial and error optimisation. Under optimised imaging conditions pre-determined by MC simulations, the BSE-SEM technique is capable of distinguishing materials with small composition differences.  相似文献   

12.
Stokes DJ  Thiel BL  Donald AM 《Scanning》2000,22(6):357-365
We report an investigation into a dynamic contrast phenomenon in water-oil emulsions imaged in the environmental scanning electron microscope. Secondary electron contrast between oil and water phases is shown to change with scan rate, even inverting in extreme cases. This effect is attributed to the fact that charge carriers in liquids have intermediate mobilities compared with those in metallic conductors and solid insulators. Thus, increasing the electron energy flux density (via slower scan rates) results in the temporary accumulation of excess charge, which in turn gives rise to increased secondary electron emission. Excess charge dissipates between frames, however, such that classical charging of the specimen is not observed. The oils used here have conductivities lower than that of water, making them more susceptible to the effect. However, the material within the primary electron interaction volume is a conductive medium. We demonstrate that charging effects are not seen in regions of the oil where the interaction volume is in contact with the more conductive continuous water phase. Secondary electron emission from these regions therefore approximates to the intrinsic yield.  相似文献   

13.
In this study backscattered electron (BSE) imaging was used to display cellular structures stained with heavy metals within an unstained resin by atomic number contrast in successively deeper layers. Balb/c 3T3 fibroblasts were cultured on either 13-mm discs of plastic Thermanox, commercially pure titanium or steel. The cells were fixed, stained and embedded in resin and the disc removed. The resin block containing the cells was sputter coated and examined in a field-emission scanning electron microscope. The technique allowed for the direct visualization of the cell undersurface and immediately overlying areas of cytoplasm through the surrounding embedding resin, with good resolution and contrast to a significant depth of about 2 μm, without the requirement for cutting sections. The fixation protocol was optimized in order to increase heavy metal staining for maximal backscattered electron production. The operation of the microscope was optimized to maximize the number of backscattered electrons produced and to minimize the spot size. BSE images were collected over a wide range of accelerating voltages (keV), from low values to high values to give ‘sections' of information from increasing depths within the sample. At 3–4 keV only structures a very short distance into the material were observed, essentially the areas of cell attachment to the removed substrate. At higher accelerating voltages information on cell morphology, including in particular stress fibres and cell nuclei, where heavy metals were intensely bound became more evident. The technique allowed stepwise ‘sectional’ information to be acquired. The technique should be useful for studies on cell morphology, cycle and adhesion with greater resolution than can be obtained with any light-microscope-based system.  相似文献   

14.
15.
Griffin BJ 《Scanning》2000,22(4):234-242
An electron-based technique for the imaging of crystal defect distribution such as material growth histories in non- and poorly conductive materials has been identified in the variable pressure or environmental scanning electron microscope. Variations in lattice coherence at the meso-scale can be imaged in suitable materials. Termed charge contrast imaging (CCI), the technique provides images that correlate exactly with emitted light or cathodoluminescence in suitable materials. This correlation links cathodoluminescence and an electron emission. The specific operating conditions for observation of these images reflect a complex interaction between the electron beam, the positive ions generated by electron-gas interactions in the chamber, a biased detector, and the sample. The net result appears to be the suppression of all but very near surface electron emission from the sample, probably from of the order of a few nanometres. Consequently, CCI are also sensitive to very low levels of surface contaminants. Successful imaging of internal structures in a diverse range of materials indicate that the technique will become an important research tool.  相似文献   

16.
Cazaux J 《Scanning》2004,26(4):181-203
This paper is an attempt to analyse most of the complicated mechanisms involved in charging and discharging of insulators investigated by scanning electron microscopy (SEM). Fundamental concepts on the secondary electron emission (SEE) yield from insulators combined with electrostatics arguments permit to reconsider, first, the widespread opinion following which charging is minimised when the incident beam energy E0 is chosen to be equal to the critical energy E(o)2, where the nominal total yield delta(o) + eta(o) = 1. For bare insulators submitted to a defocused irradiation, it is suggested here that the critical energy under permanent irradiation EC2 corresponds to a range of primary electrons, R, and nearly equals the maximum escape depth of the secondary electrons, r. This suggestion is supported by a comparison between published data of the SEE yield delta(o) of insulators (short pulse experiments) and experimental results obtained from a permanent irradiation for EC2. New SEE effects are also predicted at the early beginning of irradiation when finely focused probes are used. Practical considerations are also developed, with specific attention given to the role of a contamination layer where a negative charging may occur at any beam energy. The role of the various time constants involved in charging and discharging is also investigated, with special attention given to the dielectric time constant, which explains the dose rate-dependent effects on the effective landing energy in the steady state. Numerical applications permit to give orders of magnitude of various effects, and several other practical consequences are deduced and illustrated. Some new mechanisms for the contrast reversal during irradiation or with the change of the primary electron (PE) energy are also suggested.  相似文献   

17.
A new SEM technique for imaging uncoated non-conducting specimens at high beam voltages is described which employs a high-pressure environment and an electric field to achieve charge neutralization. During imaging, the specimen surface is kept at a stable low voltage, near earth potential, by directing a flow of positive gas ions at the specimen surface under the action of an electric bias field at a pressure of about 200 Pa. In this way charge neutrality is continuously maintained to obtain micrographs free of charging artefacts. Images are formed by specimen current detection containing both secondary electron and backscattered electron signal information. Micrographs of geological, ceramic, and semiconductor materials obtained with this method are presented. The technique is also useful for the SEM examination of histological sections of biological specimens without any further preparation. A simple theory for the charge neutralization process is described. It is based on the interaction of the primary and emissive signal components with the surrounding gas medium and the resulting neutralizing currents. Further micrographs are presented to illustrate the pressure dependence of the charge neutralization process in two glass specimens which show clearly identifiable charging artefacts in conventional microscopy.  相似文献   

18.
Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin m et al coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the “flower-like” structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.  相似文献   

19.
Wong WK  Nojeh A  Pease RF 《Scanning》2006,28(4):219-227
Image formation of single-walled carbon nanotubes (SWNTs) in the scanning electron microscope (SEM) is peculiarly sensitive to primary electron landing energy, imaging history, sample/substrate geometry, electrical conductivity, sample contamination, and substrate charging. This sensitivity is probably due to the extremely small interaction volume of the SWNTs' monolayered, nanoscale structures with the electron beam. Traditional electron beam/bulk specimen interaction models appear unable to explain the contrast behavior when directly applied to SWNTs. We present one systematic case study of SWNT SEM imaging with special attention to the above parameters and propose some physical explanations for the effect of each. We also demonstrate that it is possible to employ voltage biasing to counteract this extrinsic behavior, gain better control of the image contrast, and facilitate the interpretation of SWNT images in the SEM.  相似文献   

20.
G. C. Rosolen  W. D. King 《Scanning》1998,20(7):495-500
We have developed an automated image alignment system for the scanning electron microscope (SEM). This system enables specific locations on a sample to be located and automatically aligned with submicron accuracy. The system comprises a sample stage motorization and control unit together with dedicated imaging electronics and image processing software. The standard SEM sample stage is motorized in the X and Y axes with stepping motors which are fitted with rotary optical encoders. The imaging electronics are interfaced to beam deflection electronics of the SEM and provide the image data for the image processing software. The system initially moves the motorized sample stage to the area of interest and acquires an image. This image is compared with a reference image to determine the required adjustments to the stage position or beam deflection. This procedure is repeated until the area imaged by the SEM matches the reference image. A hierarchical image correlation technique is used to achieve submicron alignment accuracy in a few seconds. The ability to control the SEM beam deflection enables the images to be aligned with an accuracy far exceeding the positioning ability of the SEM stage. The alignment system may be used on a variety of samples without the need for registration or alignment marks since the features in the SEM image are used for alignment. This system has been used for the automatic inspection of devices on semiconductor wafers, and has also enabled the SEM to be used for direct write self-aligned electron beam lithography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号