首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Compressed molded waste poly(propylene) was reinforced with short carbon and/or glass fibers for investigation. The prepared composites were γ‐irradiated to estimate the role of the ionizing radiation as a compatibilizing agent. TGA and DSC were used to investigate the influence of exposure dose and the incorporation of short fibers on the thermal parameters of the prepared composites. The mechanical properties of different composites were also studied. It was observed that the mechanical and thermal parameters were highly affected by the kind of incorporated fibers and γ‐irradiation. The structural and morphological studies were made by means of XRD and SEM to investigate the structure change caused by the incorporation of short fibers and exposure to γ‐irradiation. The results show that the irradiation of carbon fiber–containing composite magnified its thermal stability and its tensile strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1741–1747, 2005  相似文献   

3.
Adding caulis spatholobi residue fiber (CSRF) to reinforce biodegradable poly (propylene carbonate) (PPC) as a reinforcement was investigated. The morphology of CSRF before and after continuous steam explosion, the mechanical and morphological properties of PPC/CSRF bio‐composites with different fiber content were investigated using scanning electron microscopy (SEM), mechanical tests and infrared spectroscopy. The tensile strength and modulus, and impact strength of the bio‐composites increased as the content of fiber increased in composites, the elongation at break declined. It was found that a small stay‐segment in the stress–strain curves and pulled‐out fibers on fractured surfaces of the composites. Infrared spectra result showed esterification and formation of hydrogen bonds between the matrix and CSRF. The fractured surface of the composites addressed a promotion of the interfacial interactions. POLYM. COMPOS., 35:208–216, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
The transport characteristics of dynamically and statically cross-linked Ethylene Propylene Diene Monomer/poly (ethylene-co-vinyl acetate) (EPDM/EVA) blends have been examined in the temperature interval of 28–58 °C using benzene, toluene and xylene as probe molecules. The dynamically vulcanized blends exhibited enhanced properties on the sorption and diffusion features compared to the corresponding statically vulcanized blends. In both the cases, as the EVA content increased in the blends, the solvent uptake decreased. The experimental observations have been correlated with the phase morphology of the blends, using scanning electron micrographs. The crystallinity of the blends was studied using X-ray diffraction patterns. Among the three vulcanising systems, viz, sulphur, dicumyl peroxide (DCP), and a mixture consisting of sulphur and peroxide, employed for the matrix, the DCP cross linked system exhibited the lowest solvent uptake. The molar mass between cross links and the diffusion coefficients have been computed to complement the observed sorption behaviour.  相似文献   

5.
The effect of the fiber surface modification with an azide derivative on the morphology and properties of composites based on poly(propylene) (PP) and short poly(ethylene terephthalate) (PET) and nylon 66 (PA) fibers, has been investigated. Both organic fibers act as reinforcement of the PP, and the reinforcing effect increases with the introduction of azide groups on the chemical structure of the fibers. This effect is more sensible in PP/short PET fiber composites although PA fibers gives rise to higher improvements in toughness. Scanning electron microscopy (SEM) has shown that the azide treatment of PET fibers gives rise to a better wettability and adhesion at the fiber/matrix interface. A good correlation between SEM and mechanical behavior of the composites has been observed.  相似文献   

6.
The dynamic mechanical behaviour of uncrosslinked and crosslinked styrene butadiene rubber/poly (ethylene-co-vinyl acetate) (SBR/EVA) blends was studied with reference to the effects of blend ratio, crosslinking systems, a compatibilizer viz. maleic-anhydride grafted poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS-g-MA), frequency and temperature. The two separate tan δ peaks, obtained during DMA, indicated the immiscibility of SBR/EVA system. The damping properties increased with SBR content for uncrosslinked and crosslinked blends. In the case of crosslinked systems, depending upon the type of crosslinking agent used, the glass transition temperature (T g) of SBR phase has been found to be shifted to higher temperatures. The damping characteristics of the blends were observed to be affected by the variations in frequency. The addition of the compatibilizer improved the storage modulus and reduced the damping properties. These results have been correlated with the morphology of the blends, attested by scanning electron micrographs. The activation energy for glass transition has been computed. The experimental data on storage modulus were compared with theoretical predictions.  相似文献   

7.
Ethylene-vinyl acetate (EVA) copolymer (12% vinyl acetate content) is subjected to electron beam irradiation using trimethylolpropane trimethacrylate (TMPTMA) as a radiation sensitizer. Mechanical and electrical studies of these irradiated samples show that the strength properties (tensile strength, elongation at break) are increased with radiation dosage up to an optimum radiation dose and sensitizer level above which the properties begin to deteriorate. Crosslinking of the polymer takes place on irradiation which is attributed to an increased gel content with increasing radiation dose. Compared to the original samples both dielectric constant and dielectric loss factor decrease for samples subjected to irradiation.  相似文献   

8.
Poly(acrylic acid) - alumina composites have been prepared by two different methods and thermally characterized. The glass transition temperatures (Tg) of the PAA/Al2O3 systems prepared by mixture and polymerization method were found to be 126°C and 130°C, respectively, irrespective of the alumina amounts involved in this work. The composites prepared by mixture and polymerization method have been investigated by using thermogravimetry (TGA) to follow the kinetics of anhyride formation and thermal degradation reactions. The activation energy of thermal anhydride formation and thermal degradation reaction was not found to change very much with the ratio of PAA/Al2O3 when the composites were prepared by simple mixing. For the composites prepared by the polymerization method, the activation energy of anhyride formation and thermal degradation reaction were observed to change with percentage conversion.  相似文献   

9.
A commercial low-density polyethylene copolymer, poly(ethylene-co-vinyl acetate) (EVA), synthesized via the high-pressure free-radical polymerization process, was fractionated with supercritical propylene by isothermal increasing pressure profiling and critical, isobaric, temperature rising elution fractionation (CITREF™). Extensive characterization of the fractions by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) in combination with low-angle laser light scattering (LALLS), and differential scanning calorimetry (DSC) was used to map not only the molecular-weight and chemical composition distributions of the parent copolymer, but also its short-chain branch (SCB) and long-chain branch (LCB) distributions. Fractionation by increasing pressure profiling confirmed the broad molecular-weight distribution and the narrow acetate-branch distribution expected for this random copolymer but revealed the presence of a small amount (∼ 2 wt %) of low molecular-weight amorphous species containing a high level of alkyl SCBs (80 branches/1000 C). The LCB density estimated from the Zimm-Stockmayer relationship using the GPC data monotonically increases with increasing molecular weight above 60,000 g/mol, in agreement with the kinetics of free-radical polymerization. CITREF™ was found to fractionate this copolymer by crystallinity, which is influenced by both the alkyl SCBs and the acetate branches. Up to 18% difference in total branch density (<5% in crystallinity) between EVA molecules was identified using CITREF™. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2015–2030, 1997  相似文献   

10.
Biodegradable poly(butylene succinate) (PBS)/carbon fiber (CF) composites were prepared by melt blending method using twin‐screw extruder followed by injection molding. Mechanical properties, crystallization behavior, morphology, crystal structure, and thermal stability of PBS/CF composites were investigated with different CF contents (0, 5, 10, 15, and 20 wt%). It was found that the tensile and impact properties of the composites were improved markedly with the addition of CF; while too much CF would lead to agglomeration and thus weaken the improvement. Scanning electron microscopic photographs on the fracture surfaces showed superior interfacial adhesion between fibers and PBS matrix. Crystallization peak temperature of PBS in its composites was increased due to the heterogeneous effect of CF. The spherulite size of PBS/CF composites decreased and the nucleation density increased drastically. The crystal structure was not affected by the incorporation of CF, as confirmed from the wide‐angle X‐ray diffraction analysis. thermogravimetric analysis showed that the thermal stability of PBS/CF composites was also enhanced. POLYM. COMPOS., 36:1335–1345, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
The article presents results of studies on composites made from poly(propylene) (PP) modified with poly(aniline) (PANI) doped with dodecylbenzene sulfonic acid (DBSA) and chlorinated poly(propylene) (CPP). The volume resistivity of PP/CPP/PANI composites was detected, and the results show that the volume resistivity decreases with increasing CPP content, and there exists a minimum volume resistivity. Effects of CPP on the microstructure and crystalline structure of the PP/CPP/PANI composites and the relationship between the effects and the electric property were carefully analyzed by scanning electron microscope (SEM) and wide angle X‐ray diffraction (WAXD). The method that the specimens of SEM are polished is appropriate to investigate the morphology of conducting polymer composites. The obtained results illuminate that the area of conducting parts and insulating parts obtained from the digital analysis of the SEM image is obviously influenced by the CPP content, the parameters of the lamellar‐like structure are immediately related to CPP content and denote the dispersion of PANI‐DBSA, and the percent crystallinity and mean crystal size of PP are directly correlated with the CPP content. The increasing area of conducting parts, the increasement of layer distance, the decreasement of size and layer number of the lamellar‐like structure of PANI‐DBSA, and the increasement of the percent crystallinity and mean crystal size of PP are beneficial to the improvement of the conductive property of PP/CPP/PANI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Crosslinked and uncrosslinked ethylene-vinyl acetate copolymer membranes were prepared. The permeation characteristics in the pervaporation process were examined using carbon tetrachloride-acetone mixtures. Modified membranes exhibit carbon tetrachloride permselectivity, but unmodified membranes did not display the permselectivity of crosslinked polymer. Furthermore, membranes modified with dicumyl peroxide (DCP) showed a higher flux and selectivity than those of benzoyl peroxide (BP) modified ones. The effects of feed concentration, molecular size, and polarity of the permeating species on pervaporation were analyzed. The influence of crosslinking density of the membranes on pervaporation was also analyzed. The maximum separation and flux were found to be associated with an optimum amount of crosslinking agent in the membrane. A mixture of chloroform and acetone having a composition near the azeotropic region was also separated by the pervaporation technique. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Biodegradable foams were successfully prepared from calcium carbonate reinforced poly(propylene carbonate) (PPC/CaCO3) composites using chemical foaming agents. The incorporation of inexpensive CaCO3 into PPC provided a practical way to produce completely biodegradable and cost‐competitive composite foams with densities ranging from 0.05 to 0.93 g/cm3. The effects of foaming temperature, foaming time and CaCO3 content on the fraction void, cell structure and compression property of the composite foams were investigated. We found that the fraction void was strongly dependent on the foaming conditions. Morphological examination of PPC/CaCO3 composite foams revealed that the average cell size increased with increasing both the foaming temperature and the foaming time, whereas the cell density decreased with these increases. Nevertheless, the CaCO3 content showed opposite changing tendency for the average cell size and the cell density because of the heterogeneous nucleation. Finally the introduction of CaCO3 enhanced the compressive strength of the composite foams dramatically, which was associated with well‐developed cell morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5240–5247, 2006  相似文献   

14.
Commercial polyolefin, such as poly(propylene), are widely used because of their easy processing and their excellent mechanical and thermal properties. Although their recycling is well established, the mechanical and thermal properties of the recycled waste poly(propylene)(WPP) are normally lower than those of the virgin material. The introduction of talc can improve the toughness, without compromising the processability and recycling capabilities. However, the thermal properties of these blends should be assessed to limit degradation during recycling. The effect of gamma radiation on the thermal and mechanical properties of WPP/High Crystallinity Poly(propylene)/Talc was studied. TGA, DSC, and electrical conductivity performed the characterization of WPP composites. Mechanical properties and electrical conductivity of the composites were evaluated. The results showed that the addition of Talc to WPP was found to improve the thermal stability of WPP composites. The compatibilisation of the blends using gamma radiation resulted decrease the weight loss with increasing the temperature. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

15.
Summary Specific interactions in blends of salts of sulfonated polystyrene and poly(ethylene-co-vinyl acetate) (EVA) were studied as a function of the blend composition, metal cation (H+, Na+, Zn2+) and sulfonate content. Intermolecular association between zinc sulfonate polystyrene (ZnSPS) and EVA in solution was evidenced by increase in the reduced viscosity of the blend relative to that of the pure EVA. Interactions in the solid state were observed in terms of a shift to lower frequencies in the in-plane stretching vibration of benzenesulfonate. Analysis by infrared spectroscopy indicated that the EVA solvated the Zn2+ decreasing the ionic associations in the blends. This effect increases when the ion content of ZnSPS increases and led to improvement in the dispersion of the polymeric phases as compared with that in the sodium sulfonate-PS/EVA, sulfonic acid-PS/EVA and PS/EVA blends.  相似文献   

16.
Nanocomposite films based on polyvinyl alcohol(PVA) and multi-walled carbon nanotubes (MWCNTs) at different weight ratios (i.e.0.0,0.5, 1.0,1.5, 2.0 wt%), were prepared by dispersion techniques. Cationic geminisurfactant and its monomeric form (0.01 wt%) were used as dispersants to achieve homogeneous and stable dispersionof CNTs in water and subsequent PVA/CNTs nanocomposites. Surface charge of CNTs in aqueous suspension with addition of the used dispersants were investigated by measuring its zeta potential. The structural and interaction studies have been analyzed from X-ray diffraction (XRD) and Raman spectroscopy. The effect of the used surfactantson the separation and distribution of CNTs in PVA matrix was studied by visual characterization based on scanning electron microscopy (SEM). Thermal, mechanical and electrical properties of the prepared nanocomposites were evaluated and the results were discussed in relation with the CNTs content and surfactant type as dispersant. Surfactant effect improved the dispersion homogeneity of CNTs (at 1.0 wt%) within the polymer matrix. The physical interaction between. CNTs and PVA macromolecular chains resulting in nanocomposites with largely enhanced properties compared to those prepared with higher filler loading by avoiding the agglomeration phenomenon of nanotubes. On the other hand, the addition of CNTs by content up to 2 wt%, increases the electrical conductivity to be 10?6 Scm?1 at room temperature which highly recommends such composites to be used in electrostatic dissipation applications upon using gemini surfactant. Furthermore, useful nanosized capacitor structure based onnanocomposites containing its monomeric form, characterized by high permittivity and low dielectric loss, can be formed.  相似文献   

17.
Mechanical properties and morphological studies of compatibilised blends of PA6/EVA-g-MA and PA6/EVA/EVA-g-MA were studied as functions of maleic anhydride content (MA) and dispersed phase (EVA-g-MA) concentrations, respectively at blending composition of 20 wt% dispersed phase (EVA-g-MA or combination of EVA and EVA-g-MA). The maleic anhydride (MA) was varied from 1 to 6 wt% in the PA6/EVA-g-MA blend, whereas MA concentration was fixed at 2 wt% in the ternary compositions with varying level of EVA-g-MA. ATR-IR spectroscopy revealed the formation of in situ copolymer during reactive compatibilisation of PA6 and EVA-g-MA. It was found that notched Izod impact strength of PA6/EVA-g-MA blends increased significantly with MA content in EVA-g-MA. The brittle to tough transition temperature of reactively compatibilised blends was found to be at 23 °C. The impact fractured surface topology reveals extensive deformation in presence of EVA-g-MA whereas; uncompatibilised PA6/EVA blend shows dislodging of EVA domains from the matrix. Tensile strength of the PA6/EVA-g-MA blends increased significantly as compared to PA6/EVA blends. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase and the matrix. It is observed from the phase morphological analysis that the average domain size of the PA6/EVA-g-MA blends is found to decrease gradually with increase in MA content of EVA-g-MA. A similar decrease is also found to observe in PA6/EVA/EVA-g-MA blends with increase in EVA-g-MA content, which suggest the coalescence process is slower in presence of EVA-g-MA. An attempt has been made to correlate between impact strength and morphological parameters with regard to the compatibilised system over the uncompatibilised system.  相似文献   

18.
Biodegradable composites of poly(propylene carbonate) (PPC) reinforced with unmodified cornstarch were compounded in a batch mixer followed by compression molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, as well as thermal properties of PPC/starch composites, were investigated. Tensile tests showed that incorporation of starch improves the stiffness and tensile strength of composites significantly. Scanning electron microscopic examination revealed the existence of good interfacial adhesion between the fillers and PPC matrix. Moreover, experimental results indicated that the starch addition leads to a significant improvement in the thermal stability of the composites. This paper demonstrates that the incorporation of low‐cost and biodegradable cornstarch into PPC provided a practical way to produce completely biodegradable and cost‐competitive composites with good mechanical properties. Polym. Eng. Sci. 44:2134–2140, 2004. © 2004 Society of Plastics Engineers.  相似文献   

19.
In the present study, ethylene/vinyl alcohol (EVAL) copolymers with different hydroxyl contents were melt mixed with styrene/maleic anhydride (SMA) copolymers. These two copolymers have functional groups capable of reacting intermolecularly, giving stable products. All EVAL copolymers were prepared from the same ethylene/vinyl acetate (EVA) copolymer by controlled hydrolysis. The blends, prepared at constant temperature and rotation speed in the rheomixer, were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermo-gravimetric analysis, as well as mechanical properties and extraction experiments. All the above measurements lead to the conclusion that a certain part of hydroxyls of EVAL have reacted with anhydride groups of SMA, leading to the formation of branched and cross-linked products. The effect of (1) the molar ratio of hydroxyl/maleic anhydride functional groups, (2) the overall concentration of the functional groups, and (3) the mixing time on the structure and properties of the blends are discussed. Emphasis is given on the influence of these factors on the tensile strength, the elongation at break, and impact strength of the products. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 983–999, 1997  相似文献   

20.
The use of silver as an antimicrobial agent has exhibited great interest in recent years. In this research, poly(ethylene-co-vinyl alcohol) (EVOH)–silver acetate-based antimicrobial materials were prepared at high temperature by reactive extrusion. Silver acetates were used without pretreatment. The thermal reaction of silver acetates in the material and their effect on the thermal and mechanical properties of the polymer were investigated as a function of their concentration. The dispersed silver acetate salts within the EVOH matrix have displayed a significant thermal reaction. This reaction of metallic salts was partial when the extrusion temperature was fixed at 190 °C and completed at 230 °C. The antimicrobial agents also had significant effects on the properties of the matrix. Reductions of glass temperature and storage modulus were observed by the analyses. All the variations were dependent on both the concentration of silver acetate and the extrusion parameters. The antimicrobial activity was studied and demonstrated a promising potential to create an antimicrobial material in a one-step solvent free extrusion method. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47799.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号