首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limit of pitting corrosion at high‐alloyed special steels and NiCrMo alloys in chloride solution The phenomenon of the limit of pitting corrosion in direction to positive potentials is studied by potentiokinetic polarization after a jump in the transpassive range and by potentiostatic tests at technical wrought materials and at model alloys of the systems NiCrMo and NiMo in CaCl2 solution in the concentration range 1 to 9 mol/l chloride at pH‐values of 1 to 9 at temperatures of 30 to 110°C. Surface‐analytical investigations gives in connection with knowledges from anodic polarization studies directions to the mechanism of the limit of pitting corrosion. Ranges of the limit of pitting corrosion are obtained at materials with a Mo content above 6.5% and contents of chloride of the media above 2 mol/l chloride. Increasing temperatures, increasing contents of chloride and sulfate shift the potential of the limit of pitting corrosion being always above 0.2 V (SCE) at potentiostatic determination to noble direction. There are indications that the mechanisms of limit of pitting corrosion is resulting from an inactivation of pitting nuclei by the formation of hardly soluble molybdenum chlorides in the potential range of limit of pitting corrosion.  相似文献   

2.
Corrosion Properties of High Alloyed Stainless Steels in Pure as well as in Chloride Containing Sulfuric Acid The corrosion behaviour of the high alloyed stainless steels material no. 1.4439 (X3CrNiMoN17135), 1.4539 (X2NiCrMoCu25205), 1.4503(X3NiCrMoCuTi2723) as well as the reference materials AlSI 316 L and alloy 825 was tested in diluted sulfuric acid (5, 10, 20 and 50%) at 50, 100 and 150°C. The test solutions additionally contained impurities as chlorides and cupric ions. On the material side the effect of various microstructures was checked as well: material as received (commercial production), solution annealed under laboratory conditions, cold deformed and for two selected steels electroslag remelted. Corrosion testing methods are: the immersion test will sheet coupons and the measurement of the weightloss; electrochemical testing, i.e. Current potential-and free corrosion potential-time-curves. No pitting corrosion is observed in the presence of chloride ions. In some cases the general corrosion rate is lowered if chloride ions are present. This beneficial effect of chloride ions, however, is observed only at low chloride concentrations (500 ppm). Annealing under laboratory conditions as well as electroslag remelting does not generally improve the corrosion resistance. A negative effect by cold deformation is only observed for standard stainless steel AlSI 316. Cupric ions added to the 20% sulfuric acid solution improve the corrosion resistance of all steels investigated to that extent, that they can be used in practice up to 100°C provided that the concentration of cupric ions in the solution is sufficiently high (2000 ppm). Electrochemical test results indicate that the positive effect of cupric ions is due to the shift of the free corrosion potential into the potential range of stable passivity. Copper alloyed stainless steels show the highest corrosion resistance.  相似文献   

3.
Pitting and crevice corrosion of stainless steels in chloride solutions In practice stainless steels in chloride containing waters are found to be susceptible to crevice corrosion and pitting. Corrosion tests were carried out on AISI 304 L stainless using a simulated crevice and the compositions of the electrolyte in the crevice determined. Long term potentiostatic tests were used to determine the critical potentials for crevice corrosion (US), for various steels in sodium chloride solutions at different concentrations and temperatures. The steels studied were 22 CrMo V 121, X 22 CrNi 17 and AISI 304 L. Like the critical pitting potential (UL), US was found to have a strong dependence on the chloride content of the external solution. At higher concentrations the two potentials were similar. At lower concentrations the US was lower than UL. The knowledge of these critical potentials together with well known rest potentials for a steel in an electrolyte of known concentration, allows conclusions to be drawn about its susceptibility to pitting and crevice corrosion. The method is suitable also for other passive metals.  相似文献   

4.
Surface treatments of high alloy 6 Mo stainless steel and nickel alloy weldments High alloy stainless steels (6% Mo) and a high nickel alloy (alloy 625) weldment have been tested in order to answer the question whether post-treatment of the weldment has an effect on the corrosion resistance, especially on pitting corrosion. Therefore, the critical pitting temperature of weldments was tested in acidic chloride solution (standard tests). As a result grinding with rough emery paper as well as sand blasting lowers the localized corrosion resistance in the weldment area, while pickling has a positive effect, especially after blasting. Pickling can be done either by a solution of nitric + hydrofluoric acid or by a commercial pickling paste. In any event pickling is recommended as a final surface treatment for high alloy stainless steels and nickel alloys, especially in case of prevailing highly corrosive conditions such as pitting and crevice corrosion.  相似文献   

5.
Highly corrosion resistant special steels for flue gas desulfurisation plants Highly corrosion resistant stainless steel grades have been proved under the severe corrosion conditions existing in flue gas desulfurisation scrubbers (FGD). Besides general corrosion pitting, crevice corrosion and eventually stress corrosion cracking can occur. Thus highly alloyed special steels must be used. Steel grades with a minimum content of 2.75% Mo are essential. At higher chloride levels and decreasing pH-values higher alloyed stainless steels containing up to 6% Mo are necessary. Some of these special steels are described in view to their composition and mechanical properties; their corrosion behavior has been tested under laboratory and field conditions. The use of nitrogen alloyed grades has been shown of remarkable advantage. Nitrogen additions enhance the mechanical properties and structure stability. Furthermore the precipitation of deleterious intermetallic compounds during heat treatment will be delayed by nitrogen additions, thus e.g. multi layer weldings can be carried out with higher security in view to corrosion resistance and mechanical properties. Materials selection for the different scrubber systems will be illustrated by examples. Up to now experiences about stainless steel components in FGD plants are taken into consideration. Welding with distinctly higher alloyed filler metal at the medium-touched side has been well proved in view to adequate corrosion properties.  相似文献   

6.
Pitting corrosion of austenitic chromium nickel and chromium nickel molybdenum steels in sulfuric acid containing bromides, and its inhibition nitrate ions In acidified bromide solution CrNi steels are attacked under pitting when a certain critical potential has been exceeded; this potential is higher than in the case of chloride containing solutions. Bromides are, consequently, less active than chlorides, but the pit density is considerably higher under idential corrosion conditions. While the pitting corrosion in chloride solutions can be considerably reduced by molybdenum addition to the steel, this effect is but little pronounced in the case of bromide solutions (with Mo additions up to 4% the potential is displaced by 0.2 V toward positive values). Mo additions around 2% are even dangerous since the pitting density is considerably increased in that range. Similar to the conditions in chloride solutions corrosion in bromide solutions is inhibited by nitrate additions; the potential limit is considerably higher in the bromide solution; this phenomenon points to stronger adsorption of bromide ions at the metal surface.  相似文献   

7.
Cooling water side corrosion resistance of high alloyed materials for handling of process side sulfuric acid The approved materials for use in sulfuric acid alloy 825 (German material No. 2.4858) and alloy 20 (German mater. No. 2.4660) have only a low resistance against localized corrosion in chloride containing water and are unsuitable for handling of sulfuric acid. The newly developed austenitic Cr-base alloy, alloy 33, (X1CrNiMoCuN 33-32-1, German mater. No. 1.4591) with 33 % Cr, 31 % Ni, 0,6 % Mo and 0.4 % N should have an excellent resistance against pitting and crevice corrosion additional to its high sulfuric acid resistance, too, because its Pitting Resistance Equivalent No. calculated according to PREN = %Cr + 3,3 · %Mo + 30%N runs to 50. Pitting and crevice corrosion properties of the alloy 33 are tested in comparison to those of reference materials in high chloride containing solutions (1M NaCl, artificial and modified sea water, 10% FeCl3 · 6H2O; 500 g/l CaCl2 ). Pitting potentials and potentials of repassivation of pitting, critical temperatures of localized corrosion (FeCl3-test, CaCl2-test, artificial sea water), potentials of repassivation of crevice corrosion as well as depassivation pH values of crevice corrosion following Crolet have been determined. The results confirm that the localized corrosion behaviour of the alloy 33 corresponds to its PREN. With regard to pitting corrosion alloy 33 is comparable with the special stainless steel alloy 31 (mater. No. 1.4562), with regard to crevice corrosion it is comparable with alloy 926 (German mater. No. 1.4529).  相似文献   

8.
Electrochemical behaviour and scaling of high alloy manganese steels Passivating surface layers are considered to be one of the indispensable requirements for stress corrosion cracking of metallic materials. It is shown by potentiostatic and potentiokinetic current density-potential curves that the steel X 40 MnCrN 19 in neutral aqueous chloride solutions has a passive potential region. The passivation behaviour Of precipitation hardened samples is in agreement with the chromium depletion theory. The effect of alloying on the passivation behaviour of low carbon Mn steels is studied in 3 % NaCl solution at 20 and 100 °C Increasing proportions ε-martensite reduce the passivation of susceptibility. Increasing the Mn content has the same effect. The vital factor concerning passivation behaviour, however, is chromium content. Increasing the temperature of the corrodent results in an increased tendency to form scales of steels containing less than 8 % Cr. Long-term corrosion tests have shown, that increasing the Cr content produces a continuous transition from general localized and even pitting Corrosion. Tests made without applied current in aerated solutions have shown, that the variation in time of corrosion potentials depends from the tendency to be passivated of the materials and from the oxygen content of the solutions. In oxygen containing solutions passivable steels exhibit a pronounced corrosion in the pitting region, because with such alloys anodic dissolution current densities equal to those of the limiting diffusion current of oxygen reduction are obtained only at potentials above the pitting potential.  相似文献   

9.
A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The criteria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The critieria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. The main aims of the study were to examine both the effect of manganese relative to that of chromium, molybdenum and sulphur and the effect of heat treatment and sulphide composition on steels with low manganese contents. Mathematical models for calculation of the pitting potentials have been constructed and multiple linear regression analysis gave the equations and their reliabilities. Lowering of the Mn content in austenitic stainless steels to 0.2% gives rise to a material of interest for constructions where pitting or crevice corrosion are judged to be the only potential types of attack, where operational disturbances leading to greatly increased corrosivity do not occur, where attack can not be tolerated, and where steel with normal managanese content has not exhibited fully satisfactory corrosion resistance. If the above conditions are fulfilled the low manganese content can be said to correspond to the same positive effect as is obtained by an addition of the least 1.5% Mo.  相似文献   

10.
Corrosion of stainless austenitic steels in almost anhydrous acetic acid As-welded samples and looped specimens from 5 differently alloyed stainless steels were tested for up to 246 days in 99,5% to 99,95% acetic acid at 118°C (boiling temperature/normal pressure) and at 150°C; the chloride content was varied between < 1 and 100 ppm. Pitting corrosion – of shallow depth, however (approx. 0,1 mm) – was already observed at surprisingly low chloride concentrations. Only the following were found to be resistant to pitting corrosion:
  • – stainless steels 1.4439 and 1.4539, containing approx. 4,5% molybdenum, in 99,5% acetic with < 1 ppm chloride at 118 and 150°C,
  • – stainless steels 1.4439 and 1.4539 in 99,9% acetic acid with < 1 ppm chloride at 118°C, and
  • – special stainless steel X 2 CrNiMoCuN 20 18 6, containing approx. 6% molybdenum, in 99,5% acetic acid with > 3, < 10 ppm chloride at 118 and 150°C.
Looped specimens and ground as-welded samples showed no sensitivity to transcrystalline, chloride-induced stress corrosion cracking at any of the concentration ranges. High surface-removal rates can be expected if air has access to the specimens; under this condition pitting corrosion and general corrosion may overlap. Contamination of acetic acid with chlorides must be prevented under all circumstances.  相似文献   

11.
龙晋明  司云森 《腐蚀与防护》1999,20(7):307-309,313
利用动电位法测定316L奥氏体不锈钢和R1双相不锈钢在C5H6O4-Cl^--NO3^-水溶液体系中的阳极极化曲线和点蚀电位,探讨了衣康酸(C5H6O4)介质中Cl^-和NO3^-对点蚀的影响。结果表明:(1)Cl^-浓度[Cl^-]的提高导致不锈钢点蚀电位Eb降低,其关系为Eb=a-blg[Cl^-]。同样条件下,R1不锈钢的点蚀电位比316L不锈钢高300 ̄400mV;(2)在含Cl^-的衣康  相似文献   

12.
By using chronopotentiostatic and stepwise potential change experiments with potentiokinetic and galvanostatic testing, the following types of pitting corrosion of stainless steels in chloride-containing solutions have been investigated: sulphate inhibition of pitting; 35%Cr-Fe alloy; Cr-Ni-Mo stainless steels. The circuit resistance was found to be of fundamental importance. The pit passivation potential depends on the intensity of a corrosion attack before potential change only in the case of inhibited solutions. In uninhibited solutions passivation and formation potentials are nearly equal only in the case of potentiostatic circuit conditions. The Cr-Fe alloy and the Cr-Ni-Mo stainless steels show a potential range of repassivating pitting. Of practical interest is the critical potential of stable pitting which decreases with increasing circuit resistance. The beneficial effect of Mo is only valid for the pitting potential obtained potentiostatically and not at higher circuit resistances. Considering the practical meaning of the addition of Mo it may be concluded that this element is probably essentially connected with repassivation of pits and conditioning effects of the passive layer.  相似文献   

13.
Pitting corrosion of nitrogen alloyed austenitic CrNiMnMoN steels in 3% NaCl solution Nitrogen containing austenitic CrNiMnMoN steels investigated electrochemically in chloride containing aqueous solutions exhibit pitting corrosion susceptibility which may be attributed to the materials conditions after solution annealing and work hardening. The range of passivity of high chromium steels goes up to a potential of E ≈? 1300 mVH H, but beyond the limiting potential EL for stable pitting there may be pitting phenomena on the rolled surfaces of the specimens. At potentials between E ≈? 300 mVH and EN various current density peaks appear and indicate the range of repassivable pitting in terms of pit formation on the cutting edges of the specimens. After cold rolling of the sheet the current density is increased in the entire potential range, since the pit density cutting edges and rolled surfaces increases as deformation is increased. Such cold working, however, does not result in a shift of the limiting potential EL for stable pitting. Investigations concerning the place of formation of the pits indicate that nuclei are preferentially formed at the sites of sulfide inclusions the different shapes of which produce pits of corresponding appearance on the different faces of the specimen. The growth of the pit is influenced by the depth of the pores resulting from the dissolution of the inclusion, and by lattice defects in the metal.  相似文献   

14.
In harsh chloride bearing environments stainless steel reinforcing bars offer excellent corrosion resistance and very long service life for concrete structures, but the high costs limit a more widespread use. Manganese bearing nickel‐free stainless steels could be a cost‐effective alternative. Whereas the corrosion behavior of stainless steels in alkaline solutions, mortar and concrete is quite well established, only little information on the reasons for the high pitting resistance are available. This work reports the results of pitting potential measurements in solutions simulating alkaline and carbonated concrete on black steel, stainless steel DIN 1.4301, duplex steel DIN 1.4462, and nickel‐free stainless steel DIN 1.4456. Duplex and nickel‐free stainless steels are fully resistant even in 4 M NaCl solutions with pH 13 or higher, the lower grade DIN 1.4301 shows a wide scatter between fully resistant and pitting potentials as low as +0.2 V SCE. In carbonated solutions with pH 9 the nickel‐free DIN 1.4456 shows pitting corrosion at chloride concentrations ≥3 M. This ranking of the pitting resistance can be rationalized based on XPS surface analysis results: both the increase of the Cr(III)oxy‐hydroxide and Mo(VI) contents in the passive film and a marked nickel enrichment beneath the film improve the pitting resistance. The duplex DIN 1.4462 shows the highest pitting resistance, which can be attributed to the very high Cr(III)oxy‐hydroxide, to a medium Mo(VI) content in the film and to a nickel enrichment beneath the film. Upon time, the protective properties of the surface film improve. This beneficial effect of ageing (transformation of the passive film to a less Fe2+ containing, more hydrated film) will lead to higher pitting potentials. It can be concluded that short‐term solution experiments give conservative results in terms of resistance to chloride‐induced corrosion in reinforced concrete structures.  相似文献   

15.
Determination of resistance to stress corrosion cracking (SCC) of high-alloy special steels in chloride-containing aqueous media The 18 Cr 10 Ni(Mo) based stainless steels have been continually improved by raising the Cr, Ni and Mo contents. The behavior of these high-alloy steels towards SCC was determined in test media generally used in practice since the question of the resistance to stress corrosion cracking (SCC) had still remained unanswered to a large extent. SCC tests on U-bend samples in boiling 62% CaCl2 solution showed a good differentiation depending on the Ni and Mo contents. With increasing Ni content, the susceptibility of special high-alloy steels to SCC is shifted towards longer service lives, alloys containing ≧ 42% by weight of Ni being resistant. High-Mo special alloy steels are more resistant to SCC than low-Mo special alloy steels. These results could be confirmed by tests carried out on circular cross section samples in boiling 62% CaCl2 solution under constant load and potentiostatic control. The free corrosion potentials recorded for 25% Ni special alloy steel and Ni-based alloys are within the potentiostatically determined range of insusceptibility to SCC. The high-Mo special alloy steel X 2 NiCrMoCu 25 20 6 (1.4529) shows the same critical SCC potential on the anodic side as the Ni alloy NiCr21 Mo (2.4858). Superferrit X 1 CrNiMoNb 28 4 2 (1.4575) and austenitic ferritic steel X 2 CrNiMoN 22 5 (1.4462) showed that the SCC behavior was unsatisfactory in both tests as in the case of steel X 10 CrNiMoTi 18 10 (1.4571). Tests in boiling 4 m NaCl showed no SCC, not even under the aggrevated test conditions in the test set-up. The great influence of the oxygen content was demonstrated in tests carried out in the autoclave with defined oxygen and chloride concentrations. The resistance of the steels to SCC decreases under air-saturated conditions (8 … 10 ppm O2) whereas the chloride concentration (200 and 2000 ppm Cl?) does not exercise an important influence. U-bend samples should be given preference to Erichsen samples for SCC tests. SCC break characteristics could be determined metallographically and by scanning electron microscope.  相似文献   

16.
Influence of thin oxide films on pitting corrosion of CrNi steels Chloride-induced pitting corrosion of stainless steel (Materials No. 1.4301 and 1.4571) was investigated with the aid of chronopotentiostatic tests. Oxide films upon the surface (temper colours), addition of inhibitors (sulphate and nitrate) and temperature were the testing variables. Two different critical pitting potentials have been found, which give information on the potential ranges for stable passivity, latent and stable pitting corrosion. The results only indicate a small effect of Mo content of the material and test temperature. The inhibitors (sulphate and nitrate) have a marked effect. Specimens with a clean surface produced by pickling are markedly more resistant against pitting corrosion than specimens with a yellow temper colour, whereas the difference in corrosion resistance between yellow and blue films is relatively small. The width of the critical potential range for pitting corrosion generally increases with increasing oxide film thickness.  相似文献   

17.
High‐alloyed corrosion resistant steels for the chemical process industry, power engineering and marine technology – past and future Today's most common high‐alloyed corrosion resistant steels are in their majority characterised by very low contents of carbon and sulphur and, in many cases, by substantial amounts of nitrogen as an alloying constituent. Their broad use in the chemical process industry, power generation and marine technology has become possible when new metallurgical processes for steel making had been introduced in the 1960s. The time before had seen mainly stabilised grades, being highly alloyed with copper in many cases, which have disappeared to a large extent in our days. The superferritic grades (ferritic steels with ≥ 25% chromium) had been the materials of great expectations in the 1970s, but have found a very limited application only in the chemical industry since then, e.g. for the handling of hot concentrated sulphuric acid, due to the high risks of low ductility cracking of these materials at greater wall thickness. These risks can be managed better if the highly alloyed ferritic phase is present in a finely dispersed compound with an austenitic phase where the ferritic part is adding its advantages, higher strength and resistance to stress corrosion cracking, to the duplex compound. This can result in low weight and corresponding cost saving. The application of the corrosion resistant duplex grades will expand further as much as users will better learn the special requirements of manufacturing of these materials and to take advantage of their unique properties. However, the most important alloy developments since the 1960s have been seen in the field of the austenitic stainless steels being highly alloyed with chromium, molybdenum and nitrogen. Especially the austenitic 6% Mo grades as e.g. X1NiCrMoCuN25‐20‐7 – alloy 926 (1.4529) have found many applications in chemical process industry, power generation and marine technology. Higher alloyed grades as e.g. X1NiCrMoCu32‐28‐7 – alloy 31 (1.4562) are excelling in extraordinary resistance to corrosion by acids and pitting attack. In addition today's upper limits of alloying austenitic corrosion resistant grades have been explored with grade X1CrNiMoCu33‐32‐1 – alloy 33 (1.4591) for chromium additions up to about 33% and with grade X1NiCrSi24‐9‐7 – alloy 700 Si (1.4390) for additions of silicon up to about 7%, providing a high corrosion resistance mainly in oxidising acids. When considering the prospects of further development of the corrosion resistant duplex grades the ferritic phase within these materials is both offering chances and setting limits. The high‐alloyed austenitic corrosion resistant steels have a potential being unexplored so far in the alloy range where molybdenum and nitrogen are becoming more prominent compared to the chromium content.  相似文献   

18.
The effect of varying ruthenium contents of 0.00, 0.14, 0.22, and 0.28% on the corrosion of 22%Cr-9%Ni-3%Mo duplex stainless steel (DSS) after different immersion intervals in 3.5% NaCl solutions has been investigated. The study was carried out using open-circuit potential, potentiodynamic cyclic polarization, chronoamperometry, electrochemical impedance spectroscopy, and weight-loss measurements. Particular attention was paid to the effect of Ru on the pitting corrosion of DSS in the chloride solutions. Electrochemical measurements indicated that the presence of Ru passivates the DSS alloy by decreasing its corrosion parameters. Furthermore, it shifts the corrosion and pitting potentials to more positive values. This effect was found to increase with increasing Ru content and also with increased immersion time of the alloy in the chloride solution before measurements. Weight-loss time data after varied exposure periods (4-20 days) showed that the weight-loss and corrosion rate of DSS significantly decrease with increasing Ru contents.  相似文献   

19.
Corrosion behaviour of some cast stainless steels and high alloy white irons in scrubber solutions of flue gas desulfurization plants Weight loss and electrochemical measurements have been used to determine the ranges of applicability of cast austenitic stainless steel Werkstoff No. 1.4408, of two special cast ferritic-austenitic stainless steels NORIDUR® 9.4460 and NORICLOR® NC 24 6 and of two high alloy Cr and CrMo white irons in scrubber solutions of Flue Gas Desulfurization (FGD) plants. Whereas the Werkstoff No. 1.440 8 cannot be used due to its insufficient resistance to general and localized corrosion, NORIDUR® 9.4460 can be used in scrubber solutions with pH > 2.5 and chloride concentrations up to 80 g/l, NORICLOR® NC 24 6 with 5% Mo even in liquids with pH > 1.5 and chlorides up to 100 g/l. At lower pH-values both duplex stainless steels show active corrosion of either the austenite or the ferrite depending on the contents of hydrochloric acid in the solution. At higher chloride concentrations pitting occurs on the passive materials. The CrMo white iron NORILOY NL 25 2 with 25% Cr and 2% Mo can be used in scrubber liquids with pH > 3.5. As the ferritic matrix is cathodically protected by the precipitated carbides, there is no sensitivity of this alloy to chlorides. In liquids with pH < 3.5 there is selective corrosion of the ferritic matrix. For practical application of all these cast alloys the limits for purely corrosive attack have to be modified to assure. resistance to a superposition of corrosion, erosion/abrasion and cavitation on parts exposed to real flow conditions in FGD scrubbers.  相似文献   

20.
Investigations Into transgranular and intergranular stress corrosion cracking of austenitic stainless steels In hot magnesium chloride solutions The stress corrosion cracking (SCC) of austenitic stainless steels in hot magnesium chloride solutions is known to be transgranular. Therefore the slip-step-dissolution model is most favourable when explaining the failure mechanism. Constant load and constant extension rate tests (CERT) show that both methodes are almost equivalent. Moreover constant extension rate tests in more concentrated magnesium chloride solutions at 135°C reveal a small potential range of intergranular stress corrosion cracking more negative than the range of transgranular SCC. Observations of crack nucleation and crack propagation make plain that crack nucleation is a localized corrosion process. Pitting produces crack nucleis in the elastic range whereas cracks start along slip lines after plastic deformation. Fractography of specimens which failed by intergranular and transgranular SCC show macroscopically brittle fracture surfaces. Therefore a model is proposed which explains crack propagation by hydrogen-induced intermitted cracking at high-stressed sites at the crack tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号