首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用简单、有效和可规模化的球磨工艺,原位合成了碳纳米管(CNTs)均匀分布且连接磷酸铁锂(Li FePO4)颗粒的Li Fe PO4/CNTs复合材料。该复合材料颗粒均匀,分散性好,粒径大约在200 nm~1μm之间,其分散和连接状态可由碳纳米管和粘结剂调控。当CNTs含量为4 wt%、PVDF含量为5 wt%时复合材料显示出最好的电化学性能。0.25C条件下首次放电容量达137 m Ah·g-1,50次循环后,容量仍保持在95%以上,,显示出良好的循环稳定性和可逆性。与没有添加CNTs的样品相比,CNTs网络结构极大地提高了活性物质的电导率,从而明显改善电化学性能。  相似文献   

2.
采用喷雾干燥法合成了富锂层状氧化物正极材料0.6Li[Li_(1/3)Mn_(2/3)]O2·0.4LiNi_(5/12)Mn_(5/12)Co_(1/6)O_2(简称LNMCO),并使用Zr(CH3COO)4进行ZrO_2的包覆改性。TEM测试结果显示纳米级的ZrO_2颗粒附着在LNMCO的表面。包覆质量分数为1.5%的ZrO_2包覆样品的首圈库伦效率和放电比容量有着显著提升,在室温下其首圈库伦效率和放电比容量(电流密度:20 m A·g-1,电压:2.0~4.8 V)分别为87.2%,279.3 m Ah·g-1,而原样则为75.1%,224.1 m Ah·g-1,循环100圈之后,1.5%ZrO_2包覆样品的放电比容量为248.3 m Ah·g-1,容量保持率为88.9%,高于原样的195.9 m Ah·g-1和87.4%。  相似文献   

3.
MnCl2、LiOH、EDTA和NaClO混合溶液一步水热反应合成锂离子电池正极材料正交LiMnO2(o-LiMnO2),进一步在反应体系中添加碳纳米管(CNTs)制备碳纳米管改性的o-LiMnO2(o-LiMnO2/CNTs复合材料)。采用X-射线衍射和扫描/透射电镜表征产物的晶体结构、微观形貌,循环伏安法和恒流充放电测试得活性材料电化学性能。结果表明,体系中nLi:nMn控制为8:1,在180℃反应24h得到目标产物;反应体系中添加CNTs形成复合材料可降低o-LiMnO2颗粒粒径、提高导电率。o-LiMnO2首次放电容量为76.0mAh·g-1,100周后容量保持为124.1mAh·g-1;o-LiMnO2/CNTs复合材料首次及100周放电容量(基于o-LiMnO2/CNTs的质量)分别高达94.1和159.8mAh·g-1。  相似文献   

4.
在锂硫电池正极材料的研究中,碳材料可以有效改善电池倍率及循环性能。为了提高锂硫电池的高倍率放电性能,通过水热合成的方法,制备了由非均匀粒径碳球组成的碳材料。与硫热合成后,硫均匀分布在碳材料表面及周围,复合材料含硫量为52wt%。0.2C放电电流下,首次放电比容量为1 174 m Ah·g-1,100次循环后放电比容量为788 m Ah·g-1。在4C的放电电流下,放电比容量稳定维持在600 m Ah·g-1,循环过程中,库伦效率高于90%。该碳材料有良好的导电网络,且制备方便,成本低廉,对于穿梭效应和放电过程中的膨胀效应有一定的抑制作用,是一种优秀的正极材料。  相似文献   

5.
通过控制结晶法制备类球形Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)(OH))2前驱体,与LiOH·H_2O均匀混合后,在750℃下于氧气中进行高温焙烧,最终合成正极材料Li(Ni_(0.9)Co_(0.05)Al_(0.05))O_2。扫描电子显微镜(SEM)结果显示前驱体及正极材料具有良好的形貌;X射线衍射(XRD)表明材料具有规整的六方单相层状α-Na FeO_2结构;能谱仪(EDXS)分析表明Zr元素在材料颗粒内部呈均匀分布。合成的Ni_(0.9)Co_(0.05)Al_(0.03)Zr_(0.02)O_2正极材料具有良好的电化学性能,在25℃,2.8~4.3 V充放电条件下,0.2C首次放电比容量为221.5 m Ah·g-1,充放电效率90.3%,2C倍率充放电条件下容量仍达到192.7 m Ah·g-1,100周循环后的容量保持率为92.2%。在55℃,2.8~4.3 V的高温充放电条件下,该材料的0.2C首次放电比容量可达236.2 m Ah·g-1,2C充放电倍率下循环100周容量保持率为85.1%。  相似文献   

6.
基于静电吸附作用制备PPy/CNTs复合材料   总被引:1,自引:0,他引:1  
通过添加十二烷基苯磺酸钠(SDBS), 在碳纳米管(CNTs)表面引入具有静电吸附作用的基团, 使吡咯单体附着于CNTs表面, 然后发生化学原位聚合, 得到了由片状聚吡咯(PPy)包覆CNTs所构成的PPy/CNTs复合材料, 开辟了一条易于工业化生产制备PPy/CNTs复合材料的途径. 所得材料和CNTs借助傅立叶变换红外光谱、扫描电子显微镜、透射电子显微镜等设备进行了成分和形貌的表征; 并将所得材料组装成电化学超级电容器, 进行了电化学性能测试. 研究结果表明, 加入SDBS后, 吡咯单体能很好地吸附于CNTs表面; CNTs的应用细化了PPy的颗粒, 改善了PPy的导电性能和机械性能, 使PPy/CNTs复合材料呈现出多孔状; 其电化学容量达到101.1 F·g-1(有机电解液), 是同样制备条件下所得纯PPy电化学容量(19.0 F·g-1)的5倍多, 约是所用纯CNTs电化学容量(25.0 F·g-1)的4倍.  相似文献   

7.
以碳纳米管和氧化石墨烯(CNTs/GO)为主体材料, 通过化学还原法制备了CNTs/GO 负载硫的复合正极材料CNTs/GO/S. 扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试表明, CNTs 均匀插层在GO片间, 从而形成三维多孔结构, 有利于电解液的浸润; 活性物质硫均匀地负载在CNTs/GO 表面. 电化学测试表明,CNTs/GO/S复合材料具有高的比容量和良好的循环稳定性: 在1C倍率电流密度下, 复合材料首次放电比容量高达904 mAh·g-1, 经过50圈循环之后, 复合材料的比容量仍保持在578 mAh·g-1.  相似文献   

8.
《电化学》2015,(5)
采用碳酸盐共沉淀法合成出前驱体,然后通过高温固相法制备了富锂锰基材料0.6Li[Li1/3Mn2/3]O2·0.4Li NixMnyCo1-x-yO2(x0.6,y0).使用扫描电镜(SEM)、X射线衍射(XRD)以及电化学方法等手段进行了表征.高温原位XRD测试结果表明,随着温度和Ni含量增加,材料的晶胞参数发生较大变化,温度达800 o C时,高Ni组成的材料阳离子混排现象严重,并伴有尖晶石相生成.电性能测试结果表明,在充放电电压为2.0~4.6 V、电流密度20m A·g-1条件下,低Ni含量材料表现出较好的电化学性能,首周放电容量达260.1 m Ah·g-1,首次效率为83.2%,经过50次循环后放电容量保持率高达99.7%,且在电池循环过程中,放电电压平台下降较少.  相似文献   

9.
采用喷雾热解法合成了碳包覆的SnSb/C合金复合材料,利用X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)等方法对产物的物相和形貌进行了表征,其中SnSb/C颗粒为10 nm左右的复合材料(10-SnSb/C)作为钠离子电池负极时,表现出优异的循环和倍率性能。首圈放电达到722.1m Ah·g~(-1),首圈库仑效率86.3%,在100、1000、3000 m A·g~(-1)下比容量分别为607.7、645.4、452.2 m Ah·g~(-1),在1000 m A·g~(-1)电流下循环200周后可逆容量达到623 m Ah·g~(-1),容量保持率为95%。SnSb/C复合材料出色的储钠性能源于其完全被碳包裹的纳米结构,该结构可以有效提高活性物质的利用率,促进电子、离子的传导,并且抑制纳米粒子在长循环过程中的粉化和团聚。  相似文献   

10.
合成了一种石墨烯基纳米复合材料即:由氮掺杂碳层包覆的金属钴纳米颗粒,充分分散于氮掺杂的石墨烯表面。这种纳米复合材料进一步提高了石墨烯的导电性,增加了石墨烯的储锂容量。该材料被用作锂离子电池负极材料,在性能测试中展现了良好的循环性能,在以100 m A·g-1的电流密度循环200圈后,放电容量高达950.1 m Ah·g-1,库伦效率约为98%。  相似文献   

11.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

12.
The crystal structures of Bi2.5Na0.5Ta2O9 and Bi2.5Nam-1.5NbmO3m+3 (m=3,4) have been investigated by the Rietveld analysis of their neutron powder diffraction patterns (λ=1.470 Å). These compounds belong to the Aurivillius phase family and are built up by (Bi2O2)2+ fluorite layers and (Am-1BmO3m+1)2- (m=2-4) pseudo-perovskite slabs. Bi2.5Na0.5Ta2O9 (m=2) and Bi2.5Na2.5Nb4O15 (m=4) crystallize in the orthorhombic space group A21am, Z=4, with lattice constants of a=5.4763(4), b=5.4478(4), c=24.9710 (15) and a=5.5095(5), b=5.4783(5), c=40.553(3) Å, respectively. Bi2.5Na1.5Nb3O12 (m=3) has been refined in the orthorhombic space group B2cb, Z=4, with the unit-cell parameters a=5.5024(7), b=5.4622(7), and c=32.735(4) Å. In comparison with its isostructural Nb analogue, the structure of Bi2.5Na0.5Ta2O9 is less distorted and bond valence sum calculations indicate that the Ta-O bonds are somewhat stronger than the Nb-O bonds. The cell parameters a and b increase with increasing m for the compounds Bi2.5Nam-1.5NbmO3m+3 (m=2-4), causing a greater strain in the structure. Electron microscopy studies verify that the intergrowth of mixed perovskite layers, caused by stacking faults, also increases with increasing m.  相似文献   

13.
Novel complex oxides Ca14Zn6Ga10O35 and Ca14Zn5.5Ga10.5O35.25 were prepared in air at 1200 °C, 72 h. Refinements of their crystal structures using X-ray powder diffraction data showed that Ca14Zn6Ga10O35 is ordered (S.G. F23, =0.0458, Rp=0.0485, Rwp=0.0659, χ2=1.88) and Ca14Zn5.5Ga10.5O35.25 disordered (S.G. F432, =0.0346, Rp=0.0601, Rwp=0.0794, χ2=2.82) variants of the crystal structure of Ca14Zn6Al10O35. In the crystal structure of Ca14Zn6Ga10O35, there are large empty voids, which could be partially occupied by additional oxygen atoms upon substitution of Zn2+ by Ga3+ as in Ca14Zn5.5Ga10.5O35.25. These oxygen atoms are introduced into the crystal structure of Ca14Zn5.5Ga10.5O35.25 only as a part of four tetrahedra (Zn, Ga)O4 groups sharing common vertex. This creates a situation where even a minor change in the chemical composition leads to considerable anion and cation disordering resulting in a change of space group from F23 (no. 196) to F432 (no. 209).  相似文献   

14.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

15.
一些具有NASICON型网格结构的固体电解质具有高的电导率和好的稳定性,NASICON的意思是Na Super Ionic Conductor[1]。当NaZr2(PO4)3中P5 被Si4 部分取代时便可以得到具有NASICON结构的Na1 xZr2SixP3-xO12体系,其具有高的钠离子电导率。然而有相同结构的Li1 xZr2SixP3-xO12体系的离子电导率却很低,这是因为Li 半径太小,而NASICON三维网格结构的离子通道太大,两者不匹配而使电导率下降[2]。但当LiZr2(PO4)3中Zr4 被离子半径小些的Ti4 取代,所得LiTi2(PO4)3的通道就与Li 半径相匹配,适合于锂离子的迁移,从而使其电导率…  相似文献   

16.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

17.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

18.
A new aluminum silicon oxycarbonitride, (Al5.8Si1.2)(O1.0C3.5N1.5), has been synthesized and characterized by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS). The title compound is hexagonal with space group P63/mmc and unit-cell dimensions a=0.322508(4) nm, c=3.17193(4) nm and V=0.285717(6) nm3. The atom ratios of Al:Si and those of O:C:N were, respectively, determined by EDX and EELS. The initial structural model was successfully derived from the XRPD data by the direct methods and further refined by the Rietveld method. The crystal is most probably composed of four types of domains with nearly the same fraction, each of which is isotypic to Al7C3N3 with space group P63mc. The existence of another new oxycarbonitride (Al6.6Si1.4)(O0.7C4.3N2.0), which must be homeotypic to Al8C3N4, has been also demonstrated by XRPD and TEM.  相似文献   

19.
Bi6.4Pb0.6P2O15.2 is a polymorph of structures with the general stoichiometry Bi6+xM1−xP2O15+y. However, unlike previously published structures that consist of layers formed by edge sharing OBi4 tetrahedra bridged by PO4 and TO6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) Å, b=11.3692(3) Å, c=16.3809(5) Å, β=101.167(1)°, Z=10. Single-crystal X-ray diffraction data were refined by least squares on F2 converging to R1=0.0387, wR2=0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb)4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) Å. Pairs of such cubes share an edge to form a Pb3O20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb)4 units, and some oxygen ions of the polyhedra are also part of PO4 tetrahedra. One, two, three and or four PO4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ?3.1 Å vary from 2.090(12) to 3.07(3) Å. The articulations of Pb cubes, Bi polyhedra and PO4 tetrahedra link into the three-dimensional structure.  相似文献   

20.
Magnetic susceptibility of Ca2F2-xMnxO5 members crystallizing in two different structures, one having octahedral (O), tetrahedral (T) and square-pyramidal (SP) coordination of transition metal atoms (OTSP structure) and the other having octahedral and tetrahedral coordination (OT structure), has been investigated. Susceptibility behaviour of the oxides with OTSP structure is different from that of the oxides with OT structure. Ca2Fe1-33Mn0-67O5 with OTSP structure shows an antiferromagnetic ordering while the corresponding oxide with OT structure shows weak ferromagnetism. Contribution No. 398 from the Solid State and Structural Chemistry Unit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号