首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of arterial transit times estimated using arterial spin labeling   总被引:1,自引:1,他引:0  

Objective  

To compare arterial transit time estimates from two efficient transit time mapping techniques using arterial spin labeling (ASL)—flow encoded arterial spin tagging (FEAST) and Look-Locker ASL (LL-ASL). The effects of bipolar gradients and label location were investigated.  相似文献   

2.

Objectives

Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature is not completely understood. To obtain more insight into this, the acceleration selective module was performed followed by a velocity selective module, which is used in velocity selective arterial spin labeling (VS-ASL).

Materials and methods

Nine healthy volunteers were scanned with various combinations of the control and label conditions in both the acceleration and velocity selective module. The cut-off acceleration (0.59 m/s2) or velocity (2 cm/s) was kept constant in one module, while it was varied over a large range in the other module. With the right subtractions this resulted in AccASL, VS-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other.

Results

The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries.

Conclusion

AccASL is able to label spins both in the macro- and meso-vasculature, as well as in the microvasculature.
  相似文献   

3.

Object  

To present an algorithm for optimization of background suppression pulse timing for arterial spin labeling (ASL) perfusion imaging.  相似文献   

4.
Objectives

To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire.

Materials and methods

Vessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested.

Results

The improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13).

Conclusion

Radial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.

  相似文献   

5.
Background Continuous arterial spin labeling (CASL) is a non-invasive technique for the measurement of cerebral blood flow (CBF). The aim of the present study was to examine the reproducibility of CASL measurements and its suitability to consistently detect differences between groups, regions, and resting states. Materials and methods Thirty-eight healthy subjects (19 female) were examined at 1.5 T on two measurement occasions that were seven weeks apart. Resting CBF was measured with eyes open and eyes closed. Results In different regions of interest (ROIs) the repeatability estimates varied between 9 and 19 ml/100 g/min. There were no significant mean differences between occasions in all ROIs (P > 0.05). Greater CBF in the eyes-open than in the eyes-closed state was consistently present in the primary and secondary visual areas. Furthermore, CBF was consistently greater in the right than in the left hemisphere (P < 0.05) and differed between lobes and between arterial territories (P < 0.001). Finally, we consistently observed greater CBF in women than in men (P < 0.001). Conclusion This study demonstrates the suitability of CASL to consistently detect differences between groups, regions, and resting states even after seven weeks. This emphasizes its usefulness for longitudinal designs.  相似文献   

6.

Object  

The objective of this study was to investigate effects of varying readout bandwidths on the arterial spin labeling (ASL)-perfusion MRI measurements at a high magnetic field MRI system.  相似文献   

7.

Objective

Echo-planar imaging (EPI) with CYlindrical Center-out spatiaL Encoding (EPICYCLE) is introduced as a novel hybrid three-dimensional (3D) EPI technique. Its suitability for the tracking of a short bolus created by pseudo-continuous arterial spin labeling (pCASL) through the cerebral vasculature is demonstrated.

Materials and methods

EPICYCLE acquires two-dimensional planes of k-space along center-out trajectories. These “spokes” are rotated from shot to shot about a common axis to encode a k-space cylinder. To track a bolus of labeled blood, the same subset of evenly distributed spokes is acquired in a cine fashion after a short period of pCASL. This process is repeated for all subsets to fill the whole 3D k-space of each time frame.

Results

The passage of short pCASL boluses through the vasculature of a 3D imaging slab was successfully imaged using EPICYCLE. By choosing suitable sequence parameters, the impact of slab excitation on the bolus shape could be minimized. Parametric maps of signal amplitude, transit time, and bolus width reflected typical features of blood transport in large vessels.

Conclusion

The EPICYCLE technique was successfully applied to track a short bolus of labeled arterial blood during its passage through the cerebral vasculature.
  相似文献   

8.

Objective

To accelerate super-selective arterial spin labeling (ASL) angiography by using a single control condition denoted as cycled super-selective arterial spin labeling.

Materials and methods

A single non-selective control image is acquired that is shared by selective label images. Artery-selective imaging is possible by geometrically changing the position of the labeling focus to more than one artery of interest during measurement. The presented approach is compared to conventional super-selective imaging in terms of its labeling efficiency inside and outside the labeling focus using numerical simulations and in vivo measurements. Additionally, the signal-to-noise ratios of the images are compared to non-selective ASL angiography and analyzed using a two-way ANOVA test and calculating the Pearson’s correlation coefficients.

Results

The results indicate that the labeling efficiency is not reduced within the labeled artery, but can increase as a function of distance to the artery of interest when compared to conventional super-selective ASL. In the final images, no statistically significant difference of image quality can be observed while the acquisition duration could be reduced when the major brain feeding arteries are being tagged.

Conclusion

Using super-selective arterial spin labeling, a single non-selective control acquisition suffices for reconstructing selective angiograms of the cerebral vasculature, thereby accelerating image acquisition of the major intracranial arteries without notable loss of information.
  相似文献   

9.
针对图像平滑过程中无法保留细节的问题,提出了基于局部高斯均差变分的保边图像平滑算法。首先,通过统计学分析建立局部高斯均差变分算子。其可以衡量局部梯度与高斯滤波处理后的梯度差异,区分结构和纹理。其次,构建局部高斯均差变分平滑模型,由稀疏求解得到初始平滑图像。最后,针对复杂纹理图像存在纹理残留的问题,提出孤立噪声去除模型。模型通过自适应窗口设定像素值,在不影响结构的前提下去除初始平滑图像中的纹理残留。通过主观、客观实验,与经典的算法对比,证明该算法有更高质量的平滑结果。评价指标整体提升了0.7%。通过压缩伪影去除、HDR色调映射、图像去雾和拉普拉斯金字塔加速的扩展实验,验证该算法在不同视觉任务上的适用性和效率可提升性。  相似文献   

10.
Objective

Evaluating the impact of the Inversion Time (TI) on regional perfusion estimation in a pediatric cohort using Arterial Spin Labeling (ASL).

Materials and methods

Pulsed ASL (PASL) was acquired at 3 T both at TI 1500 ms and 2020 ms from twelve MRI-negative patients (age range 9–17 years). A volume of interest (VOIs) and a voxel-wise approach were employed to evaluate subject-specific TI-dependent Cerebral Blood Flow (CBF) differences, and grey matter CBF Z-score differences. A visual evaluation was also performed.

Results

CBF was higher for TI 1500 ms in the proximal territories of the arteries (PTAs) (e.g. insular cortex and basal ganglia — P < 0.01 and P < 0.05 from the VOI analysis, respectively), and for TI 2020 ms in the distal territories of the arteries (DTAs), including the watershed areas (e.g. posterior parietal and occipital cortex — P < 0.001 and P < 0.01 from the VOI analysis, respectively). Similar differences were also evident when analyzing patient-specific CBF Z-scores and at a visual inspection.

Conclusions

TI influences ASL perfusion estimates with a region-dependent effect. The presence of intraluminal arterial signal in PTAs and the longer arterial transit time in the DTAs (including watershed areas) may account for the TI-dependent differences. Watershed areas exhibiting a lower perfusion signal at short TIs (~ 1500 ms) should not be misinterpreted as focal hypoperfused areas.

  相似文献   

11.
Objective  To develop a continuous arterial spin labeling (CASL) perfusion imaging method for cerebral blood flow (CBF) measurement in rats with reduced spin-labeling length and optimized signal-to-noise ratio (SNR f ) per unit time. Materials and methods  In the proposed method, the longitudinal magnetization of brain tissue water in the imaging slice is prepared into a proper state before spin-labeling, and a post-tagging delay is employed after spin-labeling. The method was implemented on a 4.7 T small animal scanner. Numerical simulations and in vivo experiments were used to evaluate the performance of the method proposed. Results  With the proposed method, absolute CBF could be measured accurately from normal rat with a spin-labeling pulse as short as 400 ms, and yet employing the same formula as that used in the conventional CASL perfusion imaging method for calculation. The method also showed improved SNR f per unit time over the conventional CASL perfusion imaging method and the pulsed arterial spin labeling perfusion imaging method FAIR. Conclusion  Compared to the conventional CASL perfusion imaging method, the proposed method would be advantageous for CBF measurement in small animals having short vascular transit time in terms of SNR f per unit time and other benefits brought by shortened spin-labeling pulse.  相似文献   

12.

Objective

We demonstrate the potential clinical utility of a 4D non-gadolinium dynamic angiography technique based on arterial spin-labeling called contrast inherent inflow enhanced multi-phase angiography (CINEMA) in pediatric patients.

Materials and Methods

CINEMA was qualitatively compared to conventional time-of-flight (TOF) angiography in a cohort of 31 pediatric patients at 3 Tesla.

Results

CINEMA data were successfully acquired and reconstructed in all patients with no image artifacts. There were no cases where CINEMA was rated inferior to TOF in depicting intracranial vessel conspicuity. In 19 cases, CINEMA was rated equivalent to TOF and in the 12 remaining cases CINEMA was rated superior to TOF.

Conclusion

There is a steadily rising concern in adults and children over the potential effects of intracranial deposition of gadolinium. CINEMA is therefore a viable alternative in dynamic neurovascular imaging.
  相似文献   

13.

Object  

The goal of this work is to use vessel encoded arterial spin labeling (VEASL) methods to detect feeding arteries without prior knowledge of their positions, and map the vascular territory of each.  相似文献   

14.
15.

Objective

Partial volume (PV) correction is an important step in arterial spin labeling (ASL) MRI that is used to separate perfusion from structural effects when computing the mean gray matter (GM) perfusion. There are three main methods for performing this correction: (1) GM-threshold, which includes only voxels with GM volume above a preset threshold; (2) GM-weighted, which uses voxel-wise GM contribution combined with thresholding; and (3) PVC, which applies a spatial linear regression algorithm to estimate the flow contribution of each tissue at a given voxel. In all cases, GM volume is obtained using PV maps extracted from the segmentation of the T1-weighted (T1w) image. As such, PV maps contain errors due to the difference in readout type and spatial resolution between ASL and T1w images. Here, we estimated these errors and evaluated their effect on the performance of each PV correction method in computing GM cerebral blood flow (CBF).

Materials and methods

Twenty-two volunteers underwent scanning using 2D echo planar imaging (EPI) and 3D spiral ASL. For each PV correction method, GM CBF was computed using PV maps simulated to contain estimated errors due to spatial resolution mismatch and geometric distortions which are caused by the mismatch in readout between ASL and T1w images. Results were analyzed to assess the effect of each error on the estimation of GM CBF from ASL data.

Results

Geometric distortion had the largest effect on the 2D EPI data, whereas the 3D spiral was most affected by the resolution mismatch. The PVC method outperformed the GM-threshold even in the presence of combined errors from resolution mismatch and geometric distortions. The quantitative advantage of PVC was 16% without and 10% with the combined errors for both 2D and 3D ASL. Consistent with theoretical expectations, for error-free PV maps, the PVC method extracted the true GM CBF. In contrast, GM-weighted overestimated GM CBF by 5%, while GM-threshold underestimated it by 16%. The presence of PV map errors decreased the calculated GM CBF for all methods.

Conclusion

The quality of PV maps presents no argument for the preferential use of the GM-threshold method over PVC in the clinical application of ASL.
  相似文献   

16.

Object  

To assess lung perfusion in young patients with cystic fibrosis (CF) using an arterial spin labeling (ASL) technique.  相似文献   

17.

Object  

Examination of blood perfusion in the masseter muscle in the course of repetitive isometric contraction by arterial spin-labeling (ASL) MR imaging and additional T2 relaxation time measurements during and after masseter muscle activation.  相似文献   

18.
相位图去噪是数字散斑干涉测量的关键技术,但现有以正余弦均值滤波与窗口傅立叶变换滤波为代表的去噪方法在相位保真、自适应降噪、操作简便等方面不能完全满足要求。提出了一种新的自适应相位图去噪方法,首先计算原始相位图的噪声方差,然后对图像分别进行正弦与余弦变换后得到两幅图像,再对这两幅图像进行小波同态阈值去噪与非局部均值滤波,最后将处理后的两幅相位图反正切运算并再次估计噪声方差,根据图像噪声方差的收敛情况判断是否继续迭代处理,以实现相位图的自适应降噪。实验结果表明:针对同一张含噪相位图与传统正余弦均值滤波相比,本文方法噪声方差减少了0.38、L算子和减少了0.2、SSIM提高了0.16,同时,图像信息熵仅相差0.1。该方法能够有效抑制相位图中的相干噪声,充分保留相位边缘信息,同时能够有效避免因不适当的迭代滤波次数所导致的相位失真或噪声残留。  相似文献   

19.
风电功率波动率是风电并网考核的重要内容之一,采用蓄电池储能装置是平滑风能波动最常用的方案。为提高储能设备的使用寿命,提出一种蓄电池充放电控制策略,在最小容量配置下能保持蓄电池荷电量(SOC)水平,同时实现对风电功率的滤波。MATLAB仿真结果表明所提控制策略可以在满足风功率波动指标的基础上取得良好的SOC控制效果,且实际并网储能系统的模拟测试验证了该策略的可行性和有效性。  相似文献   

20.
Objective

In this perfusion magnetic resonance imaging study, the performances of different pseudo-continuous arterial spin labeling (PCASL) sequences were compared: two-dimensional (2D) single-shot readout with simultaneous multislice (SMS), 2D single-shot echo-planar imaging (EPI) and multishot three-dimensional (3D) gradient and spin echo (GRASE) sequences combined with a background-suppression (BS) module.

Materials and methods

Whole-brain PCASL images were acquired from seven healthy volunteers. The performance of each protocol was evaluated by extracting regional cerebral blood flow (rCBF) measures using an inline morphometric segmentation prototype. Image data postprocessing and subsequent statistical analyses enabled comparisons at the regional and sub-regional levels.

Results

The main findings were as follows: (i) Mean global CBF obtained across methods was were highly correlated, and these correlations were significantly higher among the same readout sequences. (ii) Temporal signal-to-noise ratio and gray-matter-to-white-matter CBF ratio were found to be equivalent for all 2D variants but lower than those of 3D-GRASE.

Discussion

Our study demonstrates that the accelerated SMS readout can provide increased acquisition efficiency and/or a higher temporal resolution than conventional 2D and 3D readout sequences. Among all of the methods, 3D-GRASE showed the lowest variability in CBF measurements and thus highest robustness against noise.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号