首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure of silicon carbide with increasing germanium content have been examined using first principles calculations based on density functional theory. The structural stability is analysed between two different phases, namely, cubic zinc blende and hexagonal phases. The zinc blende structure is found to be the stable one for all the Si1-xGexC semiconducting carbides at normal pressure. Effect of substitution of Ge for Si in SiC on electronic and mechanical properties is studied. It is observed that cubic SiC is a semiconductor with the band gap value 1.243?eV. The band gap value of SiC is increased due to the substitution of Ge and the band gap values of Si 0.75 Ge 0.25 C, Si 0.50 Ge 0.50 C, Si 0.25 Ge 0.75 C and GeC are 1.322 eV, 1.413 eV, 1.574 eV and 1.657?eV respectively. As the pressure is increased, it is found that the energy gap gets decreased for Si1-x GexC (X?=?0, 0.25, 0.50, 0.75, 1). The elastic constants satisfy the Born – Huang elastic stability criteria. The bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are also calculated and compared with the other available results.  相似文献   

2.
<正>This paper stuides the elastic constants and some thermodynamic properties of Mg2SixSnn-1(x=0,0.25,0.5, 0.75,1) compounds by first-principles total energy calculations using the pseudo-potential plane-waves approach based on density functional theory,within the generalized gradient approximation for the exchange and correlation potential. The elastic constants of Mg2SixSnn-1 were calculated.It shows that,at 273 K,the elastic constants of Mg2Si and Mg2Sn are well consistent with previous experimental data.The isotropy decreases with increasing Sn content.The dependences of the elastic constants,the bulk modulus,the shear modulus and the Debye temperatures of Mg2Si and Mg2Si0.5Sn0.5 on pressure were discussed.Through the quasi-harmonic Debye model,in which phononic effects were considered,the specific heat capacities of Mg2SixSn1-x at constant volume and constant pressure were calculated.The calculated specific heat capacities are well consistent with the previous experimental data.  相似文献   

3.
The ternary amorphous systems CoxSi5B95?x with 7070Si y B30?y with 5<y<18 were studied for their mechanical properties at room temperature. Structure sensitive parameters as density, Young's modulus, micro-hardness and crystallization temperature were investigated as a function of Co and Si contents. The value of density increases with higher Co content but not linearly as for Co-B. Young's modulus, micro-hardness and crystallization temperature decrease with increasing Co concentration. The packing fractionη was calculated using 12-coordinated Goldschmidt atomic radii. It is shown that changes in the proportions of metalloids contents in the alloys have more significant influence on the atomic structure and therefore on the mechanical properties than changes of Co content. The maximum tensile elastic strain for the Co-Si-B system was estimated. Influence of magnetic moment on Young's modulus is discussed.  相似文献   

4.
The structural, elastic and phonon properties of Mg2Si1?xSnx alloy are investigated by performing density functional theory and density functional perturbation theory calculations. The calculated lattice parameter increases with the increase of Sn content obeying Vegard’s Law that is in good agreement with available experimental data. Shear modulus, Young’s modulus and sound velocities are determined from the obtained elastic constants. Phonon dispersion curves show a pronounced softening with increasing of Sn content. The softening mechanism has been discussed based upon the element mass and bond strength. Besides, phonon contribution to the Helmholtz free energy, the entropy and the constant-volume heat capacity are calculated within the harmonic approximation based on the calculated phonon density of states. Results show Mg2Si1?xSnx is thermodynamically more stable with higher Sn content.  相似文献   

5.
We investigate the electronic and magnetic properties of Fe2MnGa1?x Si x alloy (x = 0, 0.25, 0.5, 0.75, and 1) using first-principles density functional theory within the generalized gradient approximation method. The lattice constant decreases linearly whereas bulk modulus increases with increasing Si content. The total magnetic moment varies linearly with increasing Si content, which follows the Slater-Pauling rule. Electronic band structure calculations indicate that the Fe2MnGa1?x Si x exhibits half-metallic character for all the concentrations studied and the spin polarization and the spin-down band gap both increase with the Si content. Based on the magnetic properties calculations, the Heisenberg exchange coupling parameters give Fe-Mn ferromagnetic coupling and Mn-Mn antiferromagnetic coupling. The T C first decreases and then increases with Si content, which is in well agreement with the experimental results.  相似文献   

6.
The structural, electronic and elastic properties of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys have been investigated by using the plane-wave pseudopotential method within the density-functional theory. The calculations indicate that the variations of the equilibrium lattice constants and bulk modulus with the composition are found to be linear. The calculated elastic constants C44 and shear constants as a function of alloy concentration reveal the anisotropic hardness of these compounds. The partial and total density of states (DOS) for the binary and ternary compounds had been obtained, and the metallic behavior of these alloys had been confirmed by the analysis of DOS.  相似文献   

7.
We have used special quasirandom structure to study the structural, electronic, elastic and mechanical properties of RuAl1−xGax alloys for different compositions (x=0, 0.25, 0.50, 0.75 and 1) using a FP-LAPW method based on Density Functional Theory. The exchange and correlation potential is treated within the generalized gradient approximation. Ground state properties such as lattice constant (a0), bulk modulus (B), its pressure derivative (B′) and elastic constants are calculated. The ductility of these alloys has been analyzed by calculating the ratio of B/GH, Cauchy pressure (C12C44) and Frantsevich rule. From this study RuAl and RuGa are found to be brittle, but their alloys show ductile behavior; RuAl0.50Ga0.50 is found to be most ductile. Mechanical properties such as Poisson's ratio (σ), Young's moduli (E), and the ratio of elastic anisotropy factor (A) are estimated. We have also correlated the ductility and bonding behavior of these alloys.  相似文献   

8.
《Current Applied Physics》2015,15(11):1324-1331
We have theoretically investigated the structural, elastic, electronic and magnetic properties of Be0.75Co0.25Y (YS, Se and Te) alloys, in their zinc-blend phase. This study is carried out by using the full-potential augmented plane wave plus local orbitals method within the density functional theory. Foe computing the exchange-correlation potential, the Wu and Cohen generalized gradient approximation is employed to calculate structural and elastic properties whereas the modified Becke and Johnson potential local density approximation is utilized to examine electronic and magnetic properties. By minimizing the total energy in paramagnetic (PM) and ferromagnetic (FM) phases, it is found the studied compounds are stable in FM structure. The mechanical behavior of the studied compounds is reported with the calculation of shear modulus, Young's modulus, and Poisson's ratio provides. Such mechanical aspects might be useful for the experimentalists to study the mechanical properties upon alloying BeY compounds with Co. We also compute electronic structures, density of states (total and partial), pd-exchange splitting and magnetic moments. Moreover, bond nature is studied by estimating the spin polarized charge densities of Be0.75Co0.25Y (YS, Se and Te).  相似文献   

9.
The structural and electronic properties of the ternary SixGe1?xC alloys have been calculated using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory within both local density approximation (LDA) and generalised gradient approximation (GGA). The calculated equilibrium lattice constants and bulk moduli are compared with previous results. The concentration dependence of the electronic band structure and the direct and indirect band gaps are investigated. Using the approach of Zunger and co-workers, the microscopic origins of the band gap bowing are investigated also. Moreover, the refractive index and the optical dielectric constant for SixGe1?xC are studied. The thermodynamic stability of the alloys of interest is investigated by means of the miscibility. This is the first quantitative theoretical prediction to investigate the effective masses, optical and thermodynamic properties for SixGe1?xC alloy, and still awaits experimental confirmations.  相似文献   

10.
The electronic structures of Co-based Heusler compounds CoTiAl1−xSix (x=0, 0.25, 0.5, 0.75 and 1) are calculated by first-principles using the full potential linearized augmented plane wave (FP-LAPW) method within GGA and LSDA+U scheme. Particular emphasis was put on the role of the main group elements. In recent years, the GGA calculations of Co2TiAl (x=0) and Co2TiSi (x=1) indicated that they are half-metallic, but the electronic structure of this compound with x=0.25, 0.5 and 0.75 has not been reported yet, neither theoretically nor experimentally. The calculated results reveal that these are half-metallic and exhibit an energy gap in the minority spin state and also show 100% spin polarization. The substitution of Al by Si leads to an increase in the number of valence electrons, with increasing x. Our calculated results clearly show that with the Si doping, the lattice parameter linearly decreases; bulk modulus increases, and the total magnetic moment increases. The calculated energy gap in the minority spin state, using GGA scheme, was smaller than that obtained by using LSDA+U scheme. The outcomes of this research also show that the Co-3d DOS and therefore, the magnetic properties of compounds are dependent on electron concentration of the main group elements and it will affect the degree of p-d orbital occupation.  相似文献   

11.
In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe75Al25?x Si x , Fe70Al30?x Si x and Fe60Al40?x Si x alloys by means of Mössbauer spectroscopy and X-ray diffraction measurements. In order to obtain different stages of disorder the alloys were deformed by ball milling annealed (ordered) alloys during different number of hours. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. The study of the hyperfine fields indicates that depending on the Fe content the magnetic behaviour of these ternary alloys varies. For Fe75Al25?x Si x series, the alloys have different magnetic behaviours with deformation depending on the Si content. The magnetization of the alloys with high Si content decreases with deformation, as it happens to binary Fe75Si25 and the magnetization of the alloys with low Si content increases with deformation, as it happens to binary Fe75Al25. For Fe70Al30?x Si x series the mean hyperfine fields show that there are two different stages with the disordering, in a first stage the mean hyperfine fields decrease and in the second stage they increase. Finally, for Fe60Al40?x Si x alloys there is a magnetic transition, from a paramagnetic ordered state to a magneticdisordered state.  相似文献   

12.
The effect of chromium content on the fundamental mechanical properties of Fe-Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1?x Cr x (0? · ?0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe-Cr alloys are larger than that of pure Fe solid, and the corresponding Young??s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1?x Cr x (0? · ?0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.  相似文献   

13.
New ternary magnesium alloys AMgNi4 (A=Y, La, Ce, Pr and Nd) have been studied by First-Principles calculations within the generalized gradient approximation. The optimized structural parameters were in good agreement with the available experimental data. The calculated cohesive energies and formation enthalpies showed that these alloys had strong structural stability. Then the elastic constants Cij of these AMgNi4 alloys were calculated, and the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio ν and anisotropy value A of polycrystalline materials were derived from the elastic constants, the related mechanical properties were further discussed. The electronic structures were also calculated to reveal the underlying mechanism for the structural stability and the elastic property.  相似文献   

14.
A theoretical study of the structural, electronic, optical and thermodynamic properties of NaxRb1?xH and NaxK1?xH ternary alloys in NaCl phase has been carried out using the first-principles method. We modeled the alloys at some selected compositions with ordered structures described in terms of periodically repeated supercells. The dependences on the composition of the lattice constant, band gap, dielectric constant, refractive index, Debye temperature, mixing entropy and heat capacities were analyzed for x=0, 0.25, 0.50, 0.75 and 1. The lattice constants of NaxRb1?xH and NaxK1?xH exhibit a marginal deviation from Vegard's law. A strong deviation of the bulk modulus from linear concentration dependence was observed for both alloys. We found that the composition dependence of the energy band gap is highly non linear and the large bowing coefficient for NaxRb1?xH is sensitive to the composition. Using the approach of Zunger and co-workers, the microscopic origins of the gap bowing were detailed and explained. The thermodynamic stability of these alloys was investigated by calculating the phase diagram. The thermal effect on some macroscopic properties was investigated using the quasi-harmonic Debye model. There is a good agreement between our results and the available experimental data for the binary compounds, which is a support for those of the ternary alloys that we report for the first time.  相似文献   

15.
The electronic, optical and structural properties of ZnxCd1−xSySe1−y quaternary alloys lattice matched to GaAs and InP are studied. The electronic band structure and density of states are computed using empirical pseudopotential method. The disorder effects are included via modified virtual crystal approximation. The bandgap computed from band structures are utilized to evaluate refractive indices, dielectric constants and ionicity factors for the alloys. Among structural properties elastic constants and bulk moduli are computed by combining the EPM with Harrison bond orbital model. All possible semiconductors from the ZnCdSSe system are found to have direct bandgap. The lattice matched alloys have larger band gap and more ionic character than the lattice matched compounds.  相似文献   

16.
S. Al-Rajoub 《哲学杂志》2015,95(22):2466-2481
The structural, electronic and optical properties of mercury cadmium telluride (Hg1?xCdxTe; x = 0.0, 0.25, 0.5, 0.75) alloys are studied using density functional theory within full-potential linearized augmented plane wave method. We used the local density approximation (LDA), generalized gradient approximation (GGA), hybrid potentials, the modified Becke–Johnson (LDA/GGA)-mjb and Hubbard-corrected functionals (GGA/LDA + U), for the exchange-correlation potential (Eex). We found that LDA functional predicts better lattice constants than GGA functional, whereas, both functionals fail to predict the correct electronic structure. However, the hybrid functionals were more successful. For the case of HgTe binary alloy, the GGA + U functional predicted a semi-metallic behaviour with an inverted band gap of ?0.539 eV, which is closest to the experimental value (?0.30 eV). Ternary alloys, however, are found to be semiconductors with direct band gaps. For the x = 0.25 and 0.50, the best band gaps are found to be 0.39 and 0.81 eV using LDA-mbj functional, whereas, the GGA-mbj functional predicted the best band gap of 1.09 eV for Hg0.25Cd0.75Te alloy, which is in a very good agreement with the experimental value (1.061 eV). The optical properties of the alloys are obtained by calculating the dielectric function ?(ω). The peaks of the optical dielectric functions are consistent with the electronic gap energies of the alloys.  相似文献   

17.
《Current Applied Physics》2018,18(3):280-288
The structural, elastic, thermodynamic and electronic properties of the Ti15−xMoxSn compounds were systematically investigated by means of first-principles calculations based on the density functional theory (DFT). The calculated results demonstrate the Ti15−xMoxSn compounds still remain the stable β phase structure. The calculation of cohesive energy shows that the structural stability of the Ti15−xMoxSn compounds increases apparently with the increase of Mo content. According to Hooke's law, the single crystal elastic constants were obtained and show that all the calculated compounds keep mechanical stability. Then the bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν of polycrystalline aggregates were calculated at zero pressure. The calculated results show that among these Ti15−xMoxSn compounds, Ti4Mo11Sn exhibits the largest stiffness while Ti12Mo3Sn shows the greatest ductility. The compounds Ti12Mo3Sn and Ti11Mo4Sn with the two lowest elastic Young's modulus of 61.01 GPa and 65.59 GPa are expected to be promising metallic biomaterials for implant applications. Besides, the Debye temperature ΘD and the electronic density of states (DOS) are also investigated and discussed.  相似文献   

18.
The growth of self-assembled Ge(Si) islands on a strained Si1?xGex layer (0% < x < 20%) is studied. The size and the surface density of islands are found to increase with Ge content in the Si1?xGex layer. The increased surface density is related to augmentation of the surface roughness after deposition of the SiGe layer. The enlargement of islands is accounted for by the decrease of the wetting layer in thickness due to the additional elastic energy accumulated in the SiGe layer and to enhanced Si diffusion from the Si1?xGex layer into the islands. The increase in the fraction of the surface occupied by islands leads to a greater order in the island arrangement.  相似文献   

19.
In the present work, we have investigated the structural, electronic and optical properties of SrF2 and CdF2 and their ternary mixed SrxCd1?xF2 alloys at some selected concentrations x (x?=?0.25, 0.50, 0.75 and 1). The parent compounds SrF2 and CdF2 crystallize in Fm-3?m space group, whereas the alloys adopt the cubic structure with Pm-3?m space group for the composition x?=?0.25 and 0.75 and the tetragonal structure with space group P4/mmm for x?=?0.50. The calculations were performed using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential was handled with Wu and Cohen GGA approximation (WC-GGA). Moreover, the Engel–Vosko's (EV-GGA) formalism and the modified Becke Johnson (mBJ) approximation were also applied to improve the electronic band structure calculations. The computed structural parameters for SrF2 and CdF2 such as the equilibrium lattice constants and the bulk moduli are in good agreement with the available experimental and theoretical data. It is found that the lattice parameters increase with increasing composition (x) while the bulk modulus decreases for SrxCd1?xF2 alloys. The calculated band structures reveal an indirect band gap (W-Γ), (X-Γ) and (M-Γ) for CdF2, SrF2 and SrxCd1?xF2 for x?=?0.25, 0.75 and x?=?0.5, respectively. The optical constants, including the dielectric function, refractive index, reflectivity, absorption, extinction coefficient and the energy loss function were calculated using both WC-GGA and mBJ schemes for a radiation up to 40?eV. This is the first quantitative theoretical prediction of the optical properties for these alloys that requires experimental confirmation.  相似文献   

20.
The structural parameters with stability upon Si incorporation and elastic, electronic, thermodynamic and optical properties of Ti3Al1−xSixC2 (0≤x≤1) are investigated systematically by the plane wave pseudopotential method based on the density functional theory (DFT). The increase of some elastic parameters with increasing Si-content renders the alloys to possess higher compressive and tensile strength. The Vickers hardness value obtained with the help of Mulliken population analysis increases as x is increased from 0 to 1. The solid solutions considered are all metallic with valence and conduction bands, which have a mainly Ti 3d character, crossing the Fermi level. The temperature and pressure dependences of bulk modulus, normalized volume, specific heats, thermal expansion coefficient, and Debye temperature are all obtained through the quasi-harmonic Debye model with phononic effects for T=0−1000 K and P=0−50 GPa. The obtained results are compared with other results available. Further an analysis of optical functions for two polarization vectors reveals that the reflectivity is high in the visible–ultraviolet region up to ∼10.5 eV region showing promise as a good coating material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号