首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
提出了高压密闭消解-氢化物发生原子荧光光谱法测定农作物中硒含量的方法。粮食类样品(干样)去除杂物后,用水洗净,于60℃烘干;蔬菜类样品(鲜样)用水洗净,晾干,取可食用部分,制成匀浆。取上述样品0.5000 g置于高压密闭聚四氟乙烯(PTFE)内罐中,加入8 mL硝酸和2 mL 30%(质量分数)过氧化氢溶液,混匀过夜,于150℃密封消解4 h。冷却至室温后,于150℃赶酸至约1 mL,加入50%(体积分数)盐酸溶液5 mL,于150℃继续保持加热至溶液无色清亮并伴有白烟冒出。冷却后转移至10 mL容量瓶中,加入100 g·L^(-1)铁氰化钾溶液2.5 mL,用水定容。所得溶液在硒高性能空心阴极灯电流为80 mA,载气流量为300 mL·min^(-1),屏蔽气流量为700 mL·min^(-1)的条件下,采用氢化物发生原子荧光光谱法测定其中硒的含量。结果表明,硒的质量浓度在100μg·L^(-1)以内与对应的荧光强度呈线性关系,检出限(3s)为0.001 mg·kg^(-1)。方法用于国家标准物质分析,测定值的相对标准偏差(n=12)为2.3%~7.1%,相对误差为-6.7%~9.7%。方法还用于实际样品分析,所得测定结果与国家标准GB 5009.93-2017基本一致。  相似文献   

2.
高钛型钒渣样品1.000 0 g置于250 mL烧杯中,用水5 mL冲洗杯壁并分散样品,加入氢氟酸2.5 mL、盐酸15 mL和硝酸5 mL,加热煮沸反应至溶液产生均匀大气泡。加入硫酸(1+1)溶液5 mL,高温加热至产生三氧化硫浓白烟雾并保持3~5 min。冷却后,加入水15 mL煮沸,冷却至室温,用水定容至100 mL。采用电感耦合等离子体原子发射光谱法(ICP-AES)测定所得溶液中0.001%~3.0%(质量分数)的铬和0.001%~0.300%(质量分数)的钴、镍、镓、钪、锆的含量。采用基体匹配和同步背景校正相结合方式消除基体组分影响,并且选择了待测元素的分析谱线、背景校正区域以及光谱仪工作参数等检测条件。各元素检出限(3s)为0.000 1%~0.000 2%,相对标准偏差(n=8)均小于25%。样品的本法测定结果与ICP-MS的测定结果一致。  相似文献   

3.
在0.050 0 g样品中滴加10滴200 g·L^(-1)氢氧化钠溶液,于150℃加热15 s,待剧烈反应停止后,再加入200 g·L^(-1)氢氧化钠溶液6 mL,于200℃加热40 min。取下烧杯,加入30%(质量分数)过氧化氢溶液2 mL。继续于200℃加热20 min,以分解溶液中过量的过氧化氢。冷却,加入50%(体积分数)硝酸溶液20 mL,盐酸2 mL,于200℃加热至溶液变清亮,冷却,用水稀释至100 mL,供电感耦合等离子体原子发射光谱仪测定其中铁、铜、镁、锌、镍、铬、锆、锡、钛、锶、镓、铍、铅、镉、硅、锰、钒等17种元素含量,设置射频功率为1 300 W,观测高度为12 mm,雾化气流量为0.65 L·min^(-1)。通过优选谱线消除基体干扰中的光谱干扰,基体匹配法和同步背景校正法消除基体干扰中的物理干扰。按照上述方法处理10种标准样品,其中17种元素的质量分数均在一定范围内与其对应的谱线强度呈线性关系,检出限(3s)为0.000 3%~0.027 2%。方法分别用于实际样品以及标准样品的分析,实际样品测定值的相对标准偏差(n=11,RSD)为0.23%~3.1%,标准样品测定值的相对误差为-0.22%~5.0%,RSD(n=11)为0.17%~4.5%。  相似文献   

4.
高钛型钒渣样品1.000 0 g置于250 mL烧杯中,用水5 mL冲洗杯壁并分散样品,加入氢氟酸2.5 mL、盐酸15 mL和硝酸5 mL,加热煮沸反应至溶液产生均匀大气泡。加入硫酸(1+1)溶液5 mL,高温加热至产生三氧化硫浓白烟雾并保持3~5 min。冷却后,加入水15 mL煮沸,冷却至室温,用水定容至100 mL。采用电感耦合等离子体原子发射光谱法(ICP-AES)测定所得溶液中0.001%~3.0%(质量分数)的铬和0.001%~0.300%(质量分数)的钴、镍、镓、钪、锆的含量。采用基体匹配和同步背景校正相结合方式消除基体组分影响,并且选择了待测元素的分析谱线、背景校正区域以及光谱仪工作参数等检测条件。各元素检出限(3s)为0.000 1%~0.000 2%,相对标准偏差(n=8)均小于25%。样品的本法测定结果与ICP-MS的测定结果一致。  相似文献   

5.
分别称取15个校准样品约5.0g,加入40g·L~(-1) EDTA溶液60mL,在80℃的水浴中振荡1.5h,冷却后用水定容至100.0mL,过滤得到澄清的溶液用作校准溶液,按照相同的步骤制备空白溶液和样品溶液。选用厚度为8μm的聚乙烯薄膜作为存储溶液的界面材料,测试溶液层厚度为8mm。在选定的仪器条件下,采用手持式能量色散型-X射线荧光光谱仪测定试液中的氯、磷和钾。Cl~-、P_2O_5和K_2O的质量浓度在一定范围内与对应的荧光强度呈线性关系,检出限(3s)分别为0.020,0.036,0.032g·L~(-1)。采用本方法测定复混肥中氯、磷、钾的含量,测得结果与国家标准方法的结果一致,精密度高于国家标准方法。  相似文献   

6.
国家标准GB 5009.267-2020中电感耦合等离子体质谱法(ICP-MS)适用范围覆盖了所有食品,但需要使用四甲基氢氧化铵(TMAH)提取3~4 h,时间较长,不适用于复配矿物质和碘化物单体(如碘化钾、碘酸钾)样品分析,因此提出了题示研究。0.2 g复配矿物质样品经10 mL 4%(体积分数)硝酸溶液超声溶解5~10 min并稀释至50 mL,分取2.5 mL,加入5 mL 10%(体积分数,下同) TMAH溶液,用水定容至50 mL。0.2 g碘化钾、碘酸钾单体样品直接用10%TMAH溶液溶解后用水定容至50 mL,测定1.05%(质量分数)碘化钾单体样品和1.3%(质量分数)碘酸钾单体样品时用1%(体积分数,下同) TMAH溶液稀释500倍,测定10%(质量分数)碘化钾单体样品时用1%TMAH溶液稀释5 000倍。上述溶液采用ICP-MS测定其中碘的含量。结果表明,改进后的提取方法大大缩短了时间。碘的质量浓度在10.0~50.0μg·L-1内与碘和内标碲的信号强度比值呈线性关系,检出限(3s)为0.02μg·g-1。按照标准加入法进...  相似文献   

7.
称取约0.2g水产饲料样品,加入250g·L~(-1)氢氧化钾-甲醇溶液10mL,于60℃加热6h,每隔2h涡旋振荡一次,然后以3 000r·min~(-1)转速离心15min,取0.10mL上清液加入提前加入34~38mL水的40 mL棕色进样瓶内,用盐酸(1+9)溶液调节pH至6~8后,再加入2mol·L~(-1)乙酸钠缓冲溶液0.3 mL和乙基化试剂0.05 mL,进行衍生化反应后,加水定容至40.0mL,混匀后用吹扫捕集-气相色谱-原子荧光光谱仪进行测定。结果表明:甲基汞的质量在500pg内与荧光强度呈线性关系,方法的检出限(3s/k)为2μg·kg~(-1),测定下限(10s/k)为5μg·kg~(-1)。加标回收率在94.7%~98.8%之间,测定值的相对标准偏差(n=6)为4.9%。  相似文献   

8.
在10mL比色管中,加入5.00×10-4 mol·L-1三氯化铁溶液0.60mL和适量的异烟肼样品溶液,微波加热2min,冷却至室温后依次加入5.00×10-3 mol·L-1碘化钾溶液1.00mL、1.00×10-4 mol·L-1十六烷基三甲基溴化铵溶液0.30mL,用水稀释至10mL,静置20min后于荧光分光光度计上,在激发波长和发射波长均为275nm处测量溶液的散射强度I,同时测量空白溶液的散射强度I0,计算ΔI=I0-I。异烟肼的质量浓度在0.050~0.25mg·L-1内与ΔI呈线性关系,检出限(3s/k)为0.015mg·L-1。方法应用于异烟肼片的分析,测定值与标示量相符,测定值的相对标准偏差(n=6)小于2.0%。  相似文献   

9.
X射线荧光光谱法测定羰化反应液及催化剂中的铑   总被引:1,自引:0,他引:1  
建立了以波长色散X射线荧光光谱仪直接测定羰化反应液及催化剂中铑含量的定量分析方法, 采用甲苯为溶剂的铑催化剂溶液做校准曲线标准样品, 铑质量分数测量范围为10~1000 μg/g, 在总测量时间为20 s时, 其检出限为2.2 μg/g. 15次的平行重复测试结果, 相对标准偏差为0.94%. 溶液厚度实验说明, 当溶液的厚度超过14.7 mm时可视为达到无限厚. 并将不同样品同时进行了XRF测试和原子吸收法测量, 结果一致.  相似文献   

10.
采用熔融制样-X射线荧光光谱法测定锰铁中硅、锰、磷、铬、镍和铜的含量。样品以四硼酸锂为熔剂,在300℃下加热15min,慢速升温至1 100℃,熔融15min,冷却后制成玻璃片,用于X射线荧光光谱分析。6种元素在一定的质量分数范围内与其信号强度呈线性关系,方法的检出限在15~59μg·g-1之间。方法用于锰铁样品的分析,测定值的相对标准偏差(n=11)在0.16%~3.6%之间。  相似文献   

11.
在总体积为50.0mL的溶液中加入0.1mol·L~(-1)硫酸溶液2.0mL,0.1mol·L~(-1)碘化钾溶液2.0mL及1.0×10-4 mol·L~(-1)罗丹明B溶液5.0mL,以荧光激发波长为365nm,在荧光最大发射波长580nm处可测得罗丹明B发出的明显荧光。当在此条件下,加入过氧乙酸能使其荧光强度迅速减弱,且其减弱程度与过氧乙酸的浓度在4.2×10-7~5.0×10-5 mol·L~(-1)内呈线性关系,并根据10次空白溶液的平行测定计算得到此方法的检出限(3s/k)为2.0×10-8 mol·L~(-1)。据此提出了罗丹明B荧光猝灭法测定消毒液中过氧乙酸的含量。分析时取样品溶液0.25mL,滴加0.01mol·L~(-1)高锰酸钾溶液至溶液呈稳定的浅粉红色,加水稀释至500.0mL,制得样品待测液。取此溶液1.0mL,加入于上述反应溶液中(在加入碘化钾溶液之后),放置15min后按上述方法操作。在3件不同来源的样品按此方法进行分析并进行加标回收试验,测得回收率在96.5%~97.5%之间,测定总量的相对标准偏差(n=6)在1.3%~2.6%之间。所测得此3个样品的过氧乙酸含量均与其标示量相符。由于过氧乙酸标准溶液的不稳定性导致所测得回收率均低于100%。  相似文献   

12.
以发光二极管(LED)为激发光源,光纤光谱仪为检测设备,构建了LED激发的小型荧光光谱检测装置;利用三溴化吡啶衍生黄曲霉毒素B_(1)(AFB_(1))产生强荧光信号,提出了快速测定玉米粉中AFB_(1)含量的方法。称取5 g样品,加入25 mL 80%(体积分数)甲醇溶液和1.0 g氯化钠粉末,超声提取20 min,过滤。分取5 mL滤液,过C_(18)固相萃取小柱,得到澄清透明溶液。分取2 mL,加入1 mL 200 mg·L^(-1)三溴化吡啶溶液,于60℃恒温衍生反应4 min。在LED激发波长370 nm下,记录体系在429 nm处的荧光强度。结果表明:AFB_(1)质量浓度在10~500μg·L^(-1)内与体系荧光强度呈线性关系,检出限(3s/k)为3.47μg·L^(-1);对实际样品进行加标回收试验,AFB_(1)回收率为80.1%~109%,测定值的相对标准偏差(n=5)为2.4%~7.7%。  相似文献   

13.
在10mL比色管中,加入5.00×10-4 mol·L-1三氯化铁溶液0.60mL和适量的异烟肼样品溶液,微波加热2min,冷却至室温后依次加入5.00×10-3 mol·L-1碘化钾溶液1.00mL、1.00×10-4 mol·L-1十六烷基三甲基溴化铵溶液0.30mL,用水稀释至10mL,静置20min后于荧光分光光度计上,在激发波长和发射波长均为275nm处测量溶液的散射强度I,同时测量空白溶液的散射强度I0,计算ΔI=I0-I。异烟肼的质量浓度在0.050~0.25mg·L-1内与ΔI呈线性关系,检出限(3s/k)为0.015mg·L-1。方法应用于异烟肼片的分析,测定值与标示量相符,测定值的相对标准偏差(n=6)小于2.0%。  相似文献   

14.
膨润土样品用硝酸、盐酸、氢氟酸在超级微波消解仪中进行消解,消解完毕后加入高氯酸加热除去有机物、碳类。采用电感耦合等离子体原子发射光谱法测定样品溶液中钙、镁、磷、锰、铁、钛等6种元素的含量。6种元素的质量浓度在一定范围内与其对应的发射强度呈线性关系,方法的检出限(3s)为0.001~0.009mg·L-1。方法应用于膨润土样品的分析,测定值的相对标准偏差(n=11)为0.74%~2.7%。用标准加入法做方法的回收试验,测得回收率为96.0%~102%,方法测定值与X射线荧光光谱法测定结果相符。  相似文献   

15.
样品0.100 0g,与混合熔剂(mNa_2CO_3∶mNa_2O_2为1∶2)2.0g混匀后于750℃熔融。冷却后,用2.0%(质量分数)碳酸钠溶液50mL加热溶出熔块。过滤后,滤液(其中含有以钨酸盐存在的钨)加水定容至250mL。分取25.0mL加入2.5%(质量分数)酒石酸溶液5mL,2min后加入盐酸(1+9)溶液50mL,加水稀释至100mL。将过滤后所得不溶物(其中含碳酸钡沉淀)与硝酸15mL煮沸3min,加水定容至100mL,静置,分取上清液10.0mL,加水稀释至100mL。采用电感耦合等离子体原子发射光谱法分别测定上述两溶液中钨及钡的含量。用所提出方法测定了国家标准物质(GBW 07284和GBW 07811)中三氧化钨和氧化钡的含量,测定值与认定值相符,其相对标准偏差(n=6)分别为1.6%,0.24%。  相似文献   

16.
移取小鼠血浆样品100μL于消解罐中,加入5mL硝酸与2mL 30%(质量分数)过氧化氢溶液进行微波密闭消解,冷却后,将样品溶液赶酸至少于0.5mL,用水定容至25mL,以73 Ge为内标,选用标准检测模式(STD)。硒的线性范围为0.2~20μg·L^(-1),检出限(3s)为6.75μg·L^(-1)。加标回收率在93.1%~105%之间,测定值的相对标准偏差(n=6)小于5.0%。利用本方法测定补硒小鼠血浆中的硒含量,可观察到硒含量随给药时间而变化。  相似文献   

17.
将四硼酸锂内衬坩埚熔融制样方法应用于X射线荧光光谱法测定工业硅中总硅、二氧化硅和其他杂质组分(铝、铁、钙、镁、钛)。在熔融制样前,样品(1.000 0g)经直接灼烧(700~750℃)计算灼减量并除去样品中碳。称取上述灼烧后的样品0.200 0g,与碳酸锂1.700g和600g·L~(-1)硝酸铵溶液0.1~0.3mL混匀后移入四硼酸锂内衬坩埚中,于710~720℃预氧化10~12min。将此经预氧化的混合物及其内衬坩埚一起转移至预置有3.000g硼酸的铂金坩埚中,加入400g·L~(-1)溴化铵溶液0.1~0.4mL,于熔样机中静置熔融8min,摇动熔融12min,冷却,脱模后即得样品的玻璃片。选取测定元素的氧化物,按0.200 0g称样量模拟制备了5个校准样片,各组分的质量分数在一定范围内与其对应的X射线荧光强度呈线性关系,提出了样品中二氧化硅含量的计算公式。方法用于5个工业硅样品的分析,测定结果与湿法分析测定值相符。  相似文献   

18.
移取小鼠血浆样品100μL于消解罐中,加入5mL硝酸与2mL 30%(质量分数)过氧化氢溶液进行微波密闭消解,冷却后,将样品溶液赶酸至少于0.5mL,用水定容至25mL,以73 Ge为内标,选用标准检测模式(STD)。硒的线性范围为0.2~20μg·L~(-1),检出限(3s)为6.75μg·L~(-1)。加标回收率在93.1%~105%之间,测定值的相对标准偏差(n=6)小于5.0%。利用本方法测定补硒小鼠血浆中的硒含量,可观察到硒含量随给药时间而变化。  相似文献   

19.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定深海沉积物中稀土总量的方法。将深海沉积物湿样烘干、压碎,剔除杂质,过筛后再次烘干。称取0.20 g样品于微波消解罐中,加入5.0 mL硝酸和2.0 mL氢氟酸,在程序升温条件下进行微波消解,结束后加入3.0 mL高氯酸进行赶酸,再加入50%(体积分数)硝酸溶液加热溶解样品中的盐类。冷却后,用水定容至50 mL。分取5.0 mL,用2%(体积分数)硝酸溶液定容至50 mL,在线加入10μg·L~(-1)铟内标溶液,按照优化的ICP-MS工作条件测定稀土氧化物含量。结果显示:15种稀土氧化物的质量浓度在一定范围内和其与内标元素铟响应值的比值呈线性关系,相关系数均为0.999 9,检出限(3s)为0.006 2~0.060 0μg·g~(-1)。对3种深海沉积物样品进行精密度、加标回收及方法比对试验,结果显示:所得测定值的相对标准偏差(n=11)为1.1%~2.9%,回收率为96.0%~104%,方法和国家标准方法GB/T 17417.1-2010所得的测定值基本一致。  相似文献   

20.
取10.00 mL水样,于60~70℃加热蒸发至近干,加入硝酸-高氯酸(1+1)混合酸2.0mL,继续加热至白烟冒尽,加入盐酸2.0 mL,摇匀,加热保持微沸3~5 min,冷却后转移至10mL比色管中,用去离子水定容,使用氢化物发生-原子荧光光谱仪测定总硒的含量。另取10.00mL水样,加入盐酸2.0mL,于60~70℃加热至溶液体积小于5mL,转移至10mL比色管中,用去离子水定容,使用氢化物发生-原子荧光光谱仪测定无机硒(即四价硒和六价硒的总和)的含量。另取水样5.00mL于10mL比色管中,加入盐酸2.0mL,用去离子水定容,使用氢化物发生-原子荧光光谱仪测定四价硒的含量。用总硒含量减去无机硒含量即为有机硒含量,无机硒含量减去四价硒含量即为六价硒含量。在最佳仪器工作条件下,硒的质量浓度在1.00~20.0μg·L~(-1)内与其对应的荧光强度呈线性关系,硒的检出限(3s)和测定下限(10s)分别为0.11,0.36μg·L~(-1)。采用本方法测定某地区水中的总硒、无机硒和四价硒,加标回收率在95.7%~104%之间,相对标准偏差(n=6)在1.9%~3.2%之间。采用本方法测定了不同地区水中的总硒、无机硒和四价硒,利用差减法计算得有机硒和六价硒的含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号