首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
BACKGROUND: The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a complex pattern of expression. The regulatory elements conferring tissue-specific and temporal regulation are thought to lie mainly outside the promoter region. Previously, we identified DNase I hypersensitive sites (DHS) that may contain regulatory elements associated with the CFTR gene at -79.5 and at -20.5 kb with respect to the ATG and at 10 kb into the first intron. MATERIALS AND METHODS: In order to evaluate these regulatory elements in vivo we examined these DHS in a human CFTR gene that was introduced on a yeast artificial chromosome (YAC) into transgenic mice. The 310 kb human CFTR YAC was shown to restore the pheno-type of CF-null mice and so is likely to contain most of the regulatory elements required for tissue-specific expression of CFTR. RESULTS: We found that the YAC does not include the -79.5 kb region. The DHS at -20.5 kb is present in the chromatin of most tissues of the transgenic mice, supporting its non-tissue-specific nature. The DHS in the first intron is present in a more restricted set of tissues in the mice, although its presence does not show complete concordance with CFTR expression. The intron I DHS may be important for the higher levels of expression found in human pancreatic ducts and in lung submucosal glands. CONCLUSION: These data support the in vivo importance of these regulatory elements.  相似文献   

6.
7.
The lamin A/C gene encodes subtypes of nuclear lamins, which are involved in nuclear envelope formation, and was recently identified as the responsible gene for the autosomal dominant Emery-Dreifuss muscular dystrophy. Expression of the lamin A/C gene is developmentally regulated but little is known about the regulatory mechanism. Previous studies of lamin A/C expression suggested that the chromatin structure is important for the regulation of its expression. To elucidate the regulatory mechanism of the lamin A/C gene expression, we have analysed the functional region of the mouse lamin A/C promoter and the chromatin structure of the gene in terms of nucleosome structure and DNase I hypersensitivity. Our analyses revealed disruption of the nucleosome array at the promoter region and the presence of multiple DNase I hypersensitive sites (HSs) which were specifically associated with expression of the lamin A/C gene. Inclusion of a segment which contained the HSs in a lamin A/C promoter-luciferase reporter plasmid showed no effect on the transfected promoter activity in transient expression assays. On the other hand, substantial enhancement of the promoter activity was detected when the transfected DNA was stably integrated into the genome, suggesting the importance of the HSs in the regulation of lamin A/C expression.  相似文献   

8.
9.
10.
11.
The three CD3 genes on human chromosome 11q23 encode proteins (gamma, delta and epsilon) which form part of the antigen receptor on T lymphocytes. All three genes are clustered within 50 kb and are activated approximately contemporaneously during the early stages of T cell ontogeny. In order to pinpoint potential regulatory sequences important for locus activation and tissue-specific gene expression, the chromatin structure of almost 90 kb of this region has been probed in five cell lines using the endonuclease pancreatic DNase I. A set of DNase I hypersensitive (HS) sites has been defined in T cell chromatin, five of which were strong and not found in non-T cells, with the exception of the erythroleukaemia cell line K562, in which three sites were weakly expressed, correlating with a low level of delta mRNA. The subset of five HS sites map close to the CD3 genes and lie in regions which contain elements of defined function: the gamma promoter; the delta promoter and its 3' enhancer; and the epsilon promoter and its 3' enhancer. Since no further major T cell-restricted HS sites lie within the 90kb of the CD3 locus analysed, these five regions may contain all the sequences important for CD3 gene expression.  相似文献   

12.
13.
14.
15.
16.
17.
DNase I has been widely used for the footprinting of DNA-protein interactions including analyses of nucleosome core particle (NCP) structure. Our understanding of the relationship between the footprint and the structure of the nucleosome complex comes mainly from digestion studies of NCPs, since they have a well-defined quasi-symmetrical structure and have been widely investigated. However, several recent results suggest that the established consensus of opinion regarding the mode of digestion of NCPs by DNase I may be based on erroneous interpretation of results concerning the relationship between the NCP ends and the dyad axis. Here, we have used reconstituted NCPs with defined ends, bulk NCPs prepared with micrococcal nuclease and molecular modelling to reassess the mode of DNase I digestion. Our results indicate that DNase I cuts the two strands of the nucleosomal DNA independently with an average stagger of 4 nt with the 3'-ends protruding. The previously accepted value of 2 nt stagger is explained by the finding that micrococcal nuclease produces NCPs not with flush ends, but with approximately 1 nt 5'-recessed ends. Furthermore we explain why the DNA stagger is an even and not an odd number of nucleotides. These results are important for studies using DNase I to probe nucleosome structure in complex with other proteins or any DNA-protein complex containing B-form DNA. We also determine the origin of the 10n +/- 5 nt periodicity found in the internucleosomal ladder of DNase I digests of chromatin from various species. The explanation of the 10n +/- 5 nt ladder may have implications for the structure of the 30 nm fibre.  相似文献   

18.
19.

Background

High throughput techniques have generated a huge set of biological data, which are deposited in various databases. Efficient exploitation of these databases is often hampered by a lack of appropriate tools, which allow easy and reliable identification of genes that miss functional characterization but are correlated with specific biological conditions (e.g. organotypic expression).

Results

We have developed a simple algorithm (DGSA = Database-dependent Gene Selection and Analysis) to identify genes with unknown functions involved in organ development concentrating on the heart. Using our approach, we identified a large number of yet uncharacterized genes, which are expressed during heart development. An initial functional characterization of genes by loss-of-function analysis employing morpholino injections into zebrafish embryos disclosed severe developmental defects indicating a decisive function of selected genes for developmental processes.

Conclusion

We conclude that DGSA is a versatile tool for database mining allowing efficient selection of uncharacterized genes for functional analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号