首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对湿式离合器摩擦副的结构特点,研究离合器摩擦副表面粗糙接触情况,改进平均流量模型,建立修正的雷诺方程用于计算滑摩过程中油膜压力和油膜厚度的变化规律。采用Greenwood-Tripp接触模型,建立摩擦副摩擦热方程,模拟湿式摩擦副在滑摩过程中油膜厚度、相对滑摩转速、接合油压以及摩擦转矩变化规律,对摩擦副滑摩过程中微凸体和油膜剪切作用产生的摩擦热进行分析,得到它们径向呈线性和抛物线的分布规律,讨论接合油压和相对滑摩转速对微凸体和油膜剪切作用产生摩擦热的影响,并通过钢片的温度场实验对模拟结果加以验证。研究表明:接合油压越大,单位时间内微凸体和油膜剪切作用产生的摩擦热越大,单位时间产生摩擦热峰值的时间越提前;相对转速差越大,微凸体在滑摩过程中单位时间产生的摩擦热越大,油膜则与之相反,且相对转速的变化对单位时间产生摩擦热峰值的时间无影响。  相似文献   

2.
针对液黏调速离合器接合过程中的挤压膜流动以及摩擦阶段过渡问题,综合考虑摩擦副表面粗糙度、表面油槽结构和流体惯性力等因素,根据流体动压润滑理论和GW粗糙接触模型,建立离合器接合过程的动力学模型,并采用有限体积法对平均流量雷诺方程求解,对挤压过程中的油膜压缩速度、油膜厚度、被动盘转速、传递转矩等动力学参数的变化规律展开了仿真分析。仿真结果表明,液黏调速离合器接合过程主要处于流体润滑阶段和混合摩擦阶段。流体润滑阶段黏性扭矩迅速增加,但是相对角速度变化不大,由于油膜厚度变化较快,在0.1 s左右进入混合摩擦阶段,该阶段油膜厚度变化较小,黏性扭矩逐渐下降至零,摩擦扭矩开始占据主导地位。  相似文献   

3.
结合载荷分担概念和弹流润滑理论,研究润滑剂的流变性对渐开线齿轮油膜厚度、摩擦因数等润滑特性的影响;分别采用Carreau流变模型和Doolittle-Tait自由体积黏度模型描述润滑剂的剪切稀化特性及黏压关系,研究齿轮载荷、转速、表面粗糙度和润滑剂压黏系数对摩擦因数的影响。研究结果表明:不同的润滑剂剪切稀化特性不同,因此油膜厚度、油膜承载比例和摩擦因数均不同;摩擦因数随着转矩的增大先显著增大,当超过某一转矩值时,摩擦因数开始缓慢变化;摩擦因数随着转速的增加先显著减小,当转速增加至某一值时摩擦因数又随之增大;随着表面粗糙度和润滑剂压黏系数的增大,摩擦因数均明显增大。  相似文献   

4.
为了研究矿用重型刮板输送机可控启动装置中液黏传动可控启动过程混合摩擦阶段的转矩特性,基于雷诺方程建立了油膜承载力和剪切转矩数学模型,并根据G-W模型建立了微凸峰接触转矩模型,最终以刮板输送机实现S形曲线,得到了可控启动过程中摩擦副的承载特性和转矩特性。结果表明,可控启动过程中,摩擦副间油膜厚度按反S曲线随时间增大而减小;摩擦副的承载力和转矩不断增大,其中微凸峰为总承载力和转矩的主要承担部分,并且不断增大,而油膜承载力和转矩则只占据小部分并不断减小。研究结果为可控启动装置可控启动过程转矩特性预测和控制部分设计提供了理论依据。  相似文献   

5.
以刮板输送机可控启动装置液黏传动软启动过程为研究对象,考虑摩擦副表面粗糙度及工作油的离心力,基于平均流量模型求解了油膜厚度及油膜压力的变化规律。基于Greenwood-Tripp接触模型建立了摩擦副粗糙接触压力和转矩方程,利用转矩平衡原理对软启动过程中摩擦副承载特性的时变性进行了分析。结果表明:当启动时间10 s,额定输出转速45 r/min,启动过程遵循S形曲线变化时,油膜厚度按照反S形曲线逐渐减小,并趋于恒定值;油膜压力随时间先增大后减小,且沿径向的分布与启动时间密切相关;摩擦副间压力按照S形曲线增大;负载越大,启动时油膜越薄,摩擦副间压力越大。研究结果为准确地分析摩擦副热特性提供了先决条件,同时也为控制策略的制定奠定了理论基础。  相似文献   

6.
铜基粉末冶金摩擦副广泛应用于液黏传动,为了研究摩擦副的摩擦特性,应用MM-Ⅲ型摩擦磨损性能试验机对铜基粉末冶金摩擦副不同工况下的摩擦因数进行了测试,分析了相对转速、接触比压、温度对摩擦因数的影响。结果表明,摩擦因数随着相对转速的变化与斯特里贝克曲线相似,摩擦因数先急剧下降,后缓慢上升;随着摩擦副接触比压的增加,油膜黏性剪切作用减小,接触摩擦因数随着比压的增加逐渐降低;同时,接触摩擦因数受温度的影响较小。因此,应用摩擦磨损试验机可以得到铜基粉末冶金摩擦副摩擦因数随相对转速、温度和比压的变化规律,为混合摩擦转矩模型建立和液黏传动调速稳定性研究提供理论依据。  相似文献   

7.
为研究和掌握混合摩擦状态下机械密封端面摩擦热的变化规律,基于端面接触分形模型和平均膜厚分形模型,建立了机械密封端面混合摩擦热计算模型,并通过计算分析了端面混合摩擦热的影响因素。结果表明,随着转速的增大,总摩擦热和液膜黏性剪切摩擦热比增大,微凸体接触摩擦热比减小;随着密封介质压力或弹簧比压的增大,总摩擦热近似呈线性增大,黏性剪切摩擦热比减小,接触摩擦热比增大;随着端面分形维数的增大和特征尺度系数的减小,总摩擦热和黏性剪切摩擦热比增大,接触摩擦热比减小,且端面越光滑,总摩擦热、黏性剪切摩擦热比、接触摩擦热比的变化幅度越大;当密封端面处于混合摩擦状态时,接触摩擦热大于黏性剪切摩擦热。  相似文献   

8.
考虑热变形和弹性变形等影响因素,对倾覆状态下滑靴副热流体动力润滑性能进行研究,主要分析讨论不同柱塞腔压力、主轴转速和进口油液温度等工况下热变形和弹性变形对滑靴副热流体动力润滑性能的影响。采用有限差分法联立求解雷诺方程和油膜厚度方程进行滑靴副油膜润滑分析,采用有限单元法计算滑靴表面变形,采用能量方程和热传导方程计算油膜温度。结果表明,计及热变形和弹性形变时,油膜压力和油膜厚度场在滑靴中心油室和边缘处出现凸起峰值;油膜温度场沿滑靴半径方向由内向外递减分布;柱塞腔压力越大,主轴转速和进油口温度越高,油膜厚度的振荡衰减特征越明显,摩擦转矩随油膜厚度减小而增大,处于柱塞泵的吸排油交替区时的油膜厚度和摩擦转矩出现峰值。  相似文献   

9.
为了更准确地对液黏调速离合器流体剪切转矩进行预测,以液黏调速离合器摩擦副间的流体为研究对象,建立了考虑热效应影响的三维CFD模型,并考虑了黏温特性的影响,应用计算流体力学软件CFD ACE+对流场进行求解,得到了摩擦副间流体的压力和温度分布以及流体剪切转矩的数值解;通过实验研究对比分析了不同转速和油膜厚度下的流体剪切转矩。结果表明:影响温度分布的主要因素是流体剪切线速度;热效应对摩擦副间流体的压力分布有较小的影响;由于流体温度对黏度的影响,流体剪切转矩随着转速差的增加而缓慢增大。因此,通过与实验数据对比分析,考虑热效应影响的三维CFD模型能够更为准确地对转矩进行预测。  相似文献   

10.
为精确分析预测某型轿车轮毂轴承的弯曲疲劳寿命,考虑轴承工作状态下游隙与油膜厚度的关系,以及温度对游隙和油膜厚度的影响,结合点接触弹流油膜厚度计算方法,精确计算其最小油膜厚度值;根据ISO提供的对Lundberg-Palmgren寿命模型修正方法,计算油膜参数和润滑剂黏度比,从而确定修正系数,建立改进的寿命模型。为了验证改进模型的正确性,使用旋转弯曲疲劳寿命试验机进行疲劳试验,试验结果在误差合理区间内,证明研究模型的可靠性。建立轮毂轴承载荷分布分析模型,讨论中心距对最大滚动体载荷的影响,研究轮毂轴承的疲劳寿命在不同纯弯矩载荷和不同车速下随中心距的变化规律。结果表明:弯矩载荷是影响疲劳寿命的主要因素,增加中心距可以延长轴承寿命;轴承润滑条件与轴承转速有关,在一定范围内,转速越高,其内部润滑越充分,使用寿命越长。  相似文献   

11.
湿式换挡离合器摩擦片摩擦系数受压力、转速和润滑流量等多种工况参数影响,研究摩擦系数随工况参数的变化规律对于离合器设计具有重要意义。以铜基粉末冶金双圆弧摩擦片为研究对象,对摩擦系数的影响因素进行了分析,利用Simulink搭建了油膜厚度仿真模型,计算了摩擦副实际接触面积的大小,并讨论了实际接触面积对摩擦系数的影响;通过实验采集转矩值,计算得到了平均摩擦系数;选择研究较少的双圆弧摩擦片进行分析和实验研究。结果表明:控制油压在(0.3~0.7)MPa范围内,稳定磨损期的动摩擦系数随压力增加而减小,控制油压低于0.4MPa时摩擦系数随转速差和润滑流量单调递增,反之单调递减;台架试验测试的静摩擦系数与厂家给定值略有差别,论文研究结果对湿式离合器工程设计具有一定参考意义。  相似文献   

12.
王明凯  樊智敏 《机械传动》2020,44(6):126-133,148
为研究双渐开线齿轮传动摩擦学与动力学之间的耦合作用,根据齿轮动力学、载荷分担及弹流润滑理论,建立双渐开线齿轮传动摩擦动力学模型,研究混合弹流润滑特性与动力学之间的耦合作用。将动力学模型求解的动载荷应用于混合弹流润滑模型,求解摩擦因数等参数;将摩擦因数重新代入动力学模型,研究双渐开线齿轮动力学行为。结果表明,考虑摩擦学与动力学耦合作用对齿轮动力学行为影响较显著;低转速时,动载荷作用下摩擦因数及油膜厚度分布与稳态载荷作用时近似,转速增大时,摩擦因数及油膜厚度分布波动明显。  相似文献   

13.
为探讨热流固耦合下柱塞泵配流副参数对摩擦性能的影响,建立配流副的润滑模型,采用有限差分法对雷诺方程、能量方程和弹性变形方程进行求解,考虑黏度-温度、黏度-压力的关系,利用松弛迭代法求得热流固耦合下油膜压力、弹性变形与油膜温度分布的数值解,并运用MATLAB得到油膜压力、弹性变形、油膜温度分布云图;分析配流副参数对油膜承载力、摩擦力、摩擦转矩和摩擦因数的影响。结果表明:缸体倾斜角度和初始油膜厚度对油膜承载力的影响较大,增大缸体倾斜角度和减小初始油膜厚度,可提高油膜承载能力;减小润滑油黏度、增大初始油膜厚度能有效降低润滑摩擦过程中的摩擦力和摩擦因数。  相似文献   

14.
本文导出了考虑极限剪切状态的线接触流变热弹流Reynolds方程,该方程以Evans—Johnson流变模型为基础,可用于求解线接触流变热弹流润滑问题的油膜厚度、压力分布、剪应力分布和牵曳系数曲线。计算实例表明,润滑油的流变特性对弹流润滑的油膜形状和压力分布影响不大,但对Hertz接触区的剪应力分布有显著影响。  相似文献   

15.
为实现分动器在短时间内经历流体润滑、混合摩擦和粗糙接触三个阶段的全过程分析,建立稳态和动态弹性流体润滑力学模型以及压紧润滑阶段力学模型。利用建立的分动器扭矩传递模型,仿真分析得到分动器工作过程中油膜厚度、转速差、黏性扭矩、粗糙扭矩以及总扭矩变化曲线。在此基础上,构建分动器试验平台,对所建模型进行试验验证后,利用所建模型研究沟槽宽度、表面粗糙度、接合压力、摩擦片数、摩擦片材料渗透性和摩擦片厚度的变化规律对扭矩传递过程的影响。结果表明:沟槽槽宽对分动器传递扭矩的影响主要体现在黏性扭矩上,摩擦片不同表面粗糙度比值与达到粗糙扭矩的时间比值成正比例关系,而接合压力对摩擦片传递扭矩的影响主要体现在粗糙扭矩,摩擦片接合压力与摩擦片工作过程中所传递的粗糙扭矩成正比关系。  相似文献   

16.
分动器是智能四驱汽车的关键部件,关于其性能研究较多从机械传动角度考虑,对摩擦片与对偶钢片接触引起的微观性能研究不多。针对这一问题,建立分动器静力学和动力学模型,分析润滑油挤压力和流体弹性动力学模型对摩擦因数的影响,计算出分动器在摩擦片与对偶钢片接合和分离过程中的转矩变化情况。结果表明,摩擦片与对偶钢片接合和分离过程中摩擦因数并非定值,而是会随接合和分离产生一定的波动,导致分动器传递的转矩产生将近10N·m的差距。分析挤压力和油膜厚度的关系,得到在加速过程中,油膜挤压力对油膜厚度产生消极的作用,导致加速过程中的油膜厚度相对于恒定状态下的油膜厚度较小;在减速过程中情况相反,油膜挤压力对油膜厚度产生积极的影响,从而导致传递的粗糙转矩变小,最终形成了摩擦迟滞环。摩擦迟滞环的面积代表加速和减速过程中两者传递转矩的差值,其成果将为分动器的精确控制提供了理论依据。  相似文献   

17.
李涵 《润滑与密封》2018,43(3):81-87
基于平均流量模型的广义Reynolds方程,推导考虑轴承形状误差的综合油膜厚度表达式;针对内燃机主轴承,建立其润滑分析计算模型,研究轴颈和轴瓦上的直线度误差和圆度误差对主轴承润滑性能的影响。结果表明:同种误差类型不同的素线线型影响差异较大,相较理想轴颈,都使得油膜压力增加,最小油膜厚度减小,摩擦损失功增加,其中线形峰值影响显著,线形对称性有利于改善轴颈倾斜;轴颈和轴瓦形状误差对润滑性能存在耦合的作用,其两者形状误差线形方向的差异使得部分地方油膜厚度出现增加或减小的情况;不同工况下形状误差对润滑性能的影响差异较大,随着转速的增加形状误差影响润滑性能程度加剧,最大油膜压力增加,最小油膜厚度减小,摩擦损失总功增大。  相似文献   

18.
合理确定油槽的结构参数能有效地改善摩擦副间流体的流场特性和油膜剪切摩擦转矩性能。为了揭示摩擦副油槽结构对油膜剪切转矩的影响,以双圆弧油槽为研究对象,建立了集油槽结构参数化设计、流场数值模拟与试验设计方法(DOE)为一体的油槽结构参数影响分析平台。重点分析了液黏离合器摩擦副双圆弧油槽宽度、油槽对数、偏心距与内圈偏心圆直径对油膜剪切转矩的影响,并探究了各个参数的敏感性。结果表明,液黏离合器油膜剪切转矩随着摩擦副油槽宽度、油槽对数及内圈偏心圆直径的增大而增大,随着偏心距的增大而减小。摩擦副油槽宽度与内圈偏心圆直径是影响液黏离合器油膜剪切转矩的敏感参数。  相似文献   

19.
为研究液黏传动过程中粗糙表面的承载特性,将分形理论引入到两粗糙表面摩擦过程之中,分析传动过程中混合摩擦和边界摩擦两阶段的微凸体承载过程,考虑微凸体弹塑性变形,对M-B模型进行修正,建立修正的微凸体承载模型。建立基于修正M-B模型的微凸体承载模型。通过数值仿真得到有效面积系数、分形参数对液黏调速离合器传动过程的影响规律;对修正的微凸体承载模型的计算结果与M-B模型的计算结果进行对比分析。结果表明:微凸体接触载荷和传递转矩随着面积比的增大而增大,当有效面积系数与尺度系数增大时,接触载荷与传递转矩均有所增大;分形维数为1.5时,微凸体接触载荷与传递转矩最小且随面积比的变化最为缓慢;在整个接触区域内,弹性变形区域的面积、接触载荷以及传递转矩最大,其次是弹塑性变形区域,塑性变形区域最小;考虑弹塑性变形时,微凸体接触载荷与传递转矩均有所下降;修正M-B模型和M-B模型间的修正系数范围在25%以内,修正系数随着有效面积系数、尺度系数的增大而增大,随着分形维数的增大而减小。  相似文献   

20.
弹性环式挤压油膜系统新的三维动力学模型   总被引:1,自引:0,他引:1  
建立考虑外层油膜剪切效应的弹性环式挤压油膜系统的新的三维动力学模型.该模型采用Hirs整体流动理论和Moody壁面摩擦因数方程,在考虑壁面摩擦及外层油膜剪切效应影响的基础上,通过油膜连续方程、平衡方程获取弹性环式挤压油膜系统的控制方程,更为合理.通过数值算例分析,证明由新模型能较大幅度地改进弹性环式挤压油膜系统的动态性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号