首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ε‐caprolactone) (PCL) has been widely investigated for tissue engineering applications because of its good biocompatibility, biodegradability, and mechanical properties; however hydrophobic nature of PCL has been a colossal obstacle toward achieving scaffolds which offer satisfactory cell attachment and proliferation. To produce highly hydrophilic electrospun fibers, PCL was blended with pluronic P123 (P123) and the resulted electrospun scaffolds physiochemical characteristics such as fiber morphology, thermal behavior, crystalline structure, mechanical properties, and wettability were investigated. Moreover molecular dynamic (MD) simulation was assigned to evaluate the blended and neat PCL/water interactions. Presence of P123 at the surface of electrospun blended fibers was detected using ATR‐FTIR analysis. P123 effectiveness in improving the hydrophilicity of the scaffolds was demonstrated by water contact angel which experienced a sharp decrease from 132° corresponding to the neat PCL to almost 0° for all blended samples. Also a steady increase in water uptake ratio was observed for blended fibers as P123 content increased. The 90/10 blend ratio had the maximum tensile strength, elongation at break and crystallinity percentage. Therefore 90/10 blend ratio of PCL/P123 can balance the mechanical properties and bulk hydrophilicity of the resulted electrospun scaffold and would be a promising candidate for tissue engineering application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43345.  相似文献   

2.
In some applications, homopolymerized epoxies, which offer better biocompatibility and lower water absorption than amine‐ and anhydride‐cured epoxy, are more preferable; however, using homopolymerized epoxy as matrix in composites still remains a challenge. Herein, homopolymerized bisphenol A diglycidyl ether curing systems with simultaneously improved tensile strength, impact strength, and glass transition temperature (Tg) were achieved by addition of small amounts of tetra‐functional epoxies (TFTEs) with different spacer lengths. Effects of spacer length in TFTE on thermal and mechanical properties were investigated. Results indicated that TFTE with the longest spacer length shows the best mechanical performance. In addition, effects of TFTE loading on thermal and mechanical properties were discussed. Compared with neat bisphenol A diglycidyl ether, addition of 5% tetraglycidyl‐1,10‐bis(triphenylmethane) decane leads to simultaneous improvements in tensile strength, impact strength, and Tg. Effects of thermal cycling on the mechanical properties were also reported. Results suggest that the modified homopolymerized epoxy shows good performances and could be used as matrix materials and possibly in some dental applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46431.  相似文献   

3.
We investigated the phase separation, cure kinetics and thermomechanical properties of diglycidyl ether of bisphenol‐A/4,4′‐diaminodiphenylsulfone/poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer (TBCP) blends. Fourier transform infrared spectroscopy, differential scanning calorimetry, and atomic force microscopy revealed that the blends exhibited heterogeneous phase morphology in which the TBCP formed dispersed domains in epoxy matrix, due to reaction induced phase separation. A fraction of phase‐separated PEO phase underwent partial crystallization whereas another fraction formed interphases between the dispersed domains and epoxy matrix. Moreover, the dispersed PEO chains improved the compatibility and interfacial adhesion between the matrix and domains and, consequently, significantly improved the mechanical properties of epoxy resin. Furthermore, the thermal degradation studies and contact angle measurements disclosed that the dispersed domains were well protected by the epoxy matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44406.  相似文献   

4.
New thermoplastic poly(ether–urethane)s and poly(carbonate–urethane)s were synthesized by a one‐step melt polymerization from poly(oxytetramethylene) diol (PTMO) and poly(hexane‐1,6‐diyl carbonate) diol (PHCD) as soft segments, 4,4′‐diphenylmethane diisocyanate, and 2,2′‐[methylenebis(1,4‐phenylenemethylenethio)]diethanol, 3,3′‐[methylenebis(1,4‐phenylenemethylenethio)]dipropan‐1‐ol or 6,6′‐[methylenebis(1,4‐phenylenemethylenethio)]dihexan‐1‐ol as unconventional chain extenders. The effects of the kind and amount of the polymer diol and chain extender used on the structure and properties of the polymers were studied. The polymers were examined by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction analysis, atomic force microscopy, differential scanning calorimetry, thermogravimetric analysis (TGA), TGA coupled with FTIR spectroscopy, and Shore hardness and tensile testing. The obtained high‐molecular‐weight polymers showed elastomeric or plastic properties. Generally, the PTMO‐based polymers exhibited significantly lower glass‐transition temperatures (up to ?48.1 vs ?1.4°C), a higher degree of microphase separation, and ordering in hard‐segment domains in comparison with the corresponding PHCD‐based ones. Moreover, it was observed that the polymers with the PTMO soft segments showed poorer tensile strengths (up to 36.5 vs 59.6 MPa) but higher elongations at break. All of the polymers exhibited a relatively good thermal stability. Their temperatures of 1% mass loss were in the range 270–320°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Vitrimers-like polyhydroxy esters networks were thermally synthesized from mixtures of the diepoxide monomer diglycidyl ether polyethyleneglycol (DGEPEG), citric (CA), and sebacic acids (SA), using zinc acetate in proportions of 1 to –5 mol%. as catalyst for bond exchange reactions. Reaction of DGEPEG with the acids is exothermic with enthalpy up to 326 J/g and takes place even without any catalyst. The progress of the reaction is reduced as the content of SA is increased in the formulations, but reaction enthalpy in mixtures containing 1% of Zn catalyst is higher than those with 5%mol Zn. These polyhydroxy esters networks are rubber-like materials with Tg varying from −24 to −43°C, with formulations containing SA showing the lowest Tg values. The presence of ester and hydroxyl groups and Zn catalyst in the polymers give rise to exchange reactions similar to those shown by vitrimers. However, the increase in Zn concentration from 1% to 5%, arouses a loss of thermal stability of these materials.  相似文献   

6.
Tetra‐functional epoxy resin N,N,N′,N′‐tetraglycidyl‐3,3′‐diethyl‐4,4′‐diaminodiphenylmethane (TGDEDDM) was synthesized and characterized. The viscosity of TGDEDDM at 25°C was 7.2 Pa·s, much lower than that of N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM). DSC analysis revealed that the reactivity of TGDEDDM with curing agent 4,4′‐diamino diphenylsulfone (DDS) was significantly lower than that of TGDDM. Owing to its lower viscosity and reactivity, TGDEDDM/DDS exhibited a much wider processing temperature window compared to TGDDM/DDS. Trifluoroborane ethylamine complex (BF3‐MEA) was used to promote the curing of TGDEDDM/DDS to achieve a full cure, and the thermal and mechanical properties of the cured TGDEDDM were investigated and compared with those of the cured TGDDM. It transpired that, due to the introduction of ethyl groups, the heat resistance and flexural strength were reduced, while the modulus was enhanced. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40009.  相似文献   

7.
The characterization by DMA and compressive stress‐strain behavior of an epoxy resin cured with a number of liquid amines is studied in this work along with predictions of the associated properties using Group Interaction Modeling (GIM). A number of different methods are used to assign two of the input parameters for GIM, and the effect on the predictions is investigated. Excellent predictions are made for the glass transition temperature, along with good predictions for the beta transition temperature and modulus for the majority of resins tested. Predictions for the compressive yield stress and strain are less accurate, due to a number of factors, but still show reasonable correlation with the experimental data. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3130–3141, 2013  相似文献   

8.
Monomer cast nylon was incorporated with different contents of kaolin, which is grafted with poly (ethylene glycol diglycidyl ether) via in-situ polymerization. The influence of treated-kaolin and kaolin contents on composites properties was studied. Treated-kaolin has a better effect on the properties of nylon than kaolin. Thermogravimetric analysis and Differential scanning calorimetry analysis show that that the feeding of kaolin improved thermal stability and crystallinity of nylon. The results indicate that using treated-kaolin as reinforcement, the composites displayed remarkable mechanical properties, the tensile strength and notched impact strength are 83.6 MPa and 4.46 MPa, respectively. The water absorption capacity of composites was greatly reduced by 50% with the feeding of kaolin.  相似文献   

9.
In this work, we present the synthesis and characterization of chemically crosslinked polyurethanes (PU) composed of poly(ethylene glycol) (PEG) and poly(caprolactone) diol (PCL‐diol), as hydrophilic and hydrophobic segments respectively, poly(caprolactone) triol (PCL‐triol), to induce hydrolysable crosslinks, and hexamethylene diisocyanate (HDI). The syntheses were performed at 45 °C, resulting in polyurethanes with different PEG/PCL‐diol/PCL‐triol mass fractions. All the PUs are able to crystallize and their thermal properties depend on the global composition. The water uptake capacities of the PU increase as the PEG amount increases. The water into hydrogels is present in different environments, as bounded, bulk and free water. The PU hydrogels are thermo‐responsive, presenting a negative dependence of the water uptake with the temperature for PEG rich networks, which gradually changes to a positive behavior as the amount of poly(caprolactone) (PCL) segments increases. However, the water uptake capacity changes continuously without an abrupt transition. Scanning electron microscopy (SEM) analyses of the hydrogel morphology after lyophilization revealed a porous structure. Mechanical compression tests revealed that the hydrogels present good resilience and low recovery hysteresis when they are subject to cycles of compression–decompression. In addition, the mechanical properties of the hydrogels varies with the composition and crosslinking density, and therefore with the water uptake capacity. The PU properties can be tuned to fit for different applications, such as biomedical applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43573.  相似文献   

10.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐4,4′‐ bibenzoate) (PETBB) are prepared by coextrusion. Analysis by 13C‐NMR spectroscopy shows that little transesterification occurs during the blending process. Additional heat treatment of the blend leads to more transesterification and a corresponding increase in the degree of randomness, R. Analysis by differential scanning calorimetry shows that the as‐extruded blend is semicrystalline, unlike PETBB15, a random copolymer with the same composition as the non‐ random blend. Additional heat treatment of the blend leads to a decrease in the melting point, Tm, and an increase in glass transition temperature, Tg. The Tm and Tg of the blend reach minimum and maximum values, respectively, after 15 min at 270°C, at which point the blend has not been fully randomized. The blend has a lower crystallization rate than PET and PETBB55 (a copolymer containing 55 mol % bibenzoate). The PET/PETBB55 (70/30 w/w) blend shows a secondary endothermic peak at 15°C above an isothermal crystallization temperature. The secondary peak was confirmed to be the melting of small and/or imperfect crystals resulting from secondary crystallization. The blend exhibits the crystal structure of PET. Tensile properties of the fibers prepared from the blend are comparable to those of PET fiber, whereas PETBB55 fibers display higher performance. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1793–1803, 2004  相似文献   

11.
Linear segmented polyurethane ureas were prepared from 4,4′-dicyclohexylmethane diisocyanate (H12MDI), 4,4′-diamino-3,3′-dicyclohexyl methane (3DCM), and various hydrophilic and hydrophobic soft segments. Kinetic studies of the synthesis of the diisocyanate-terminated prepolymers revealed that the use of too little reactive polyols (that is, polyoxypropylene that bears secondary hydroxyls) could be rather tricky; the noncatalyzed reaction is very slow, but the use of a catalyst soon triggers the formation of side products, and the processing window consequently becomes quite short. Microcalorimetric and dynamic mechanical measurements showed that all the materials were highly phase-segregated elastomers and displayed good mechanical properties up to high temperature (typically 180°C), provided that they had been postcured properly; in this respect, the dramatic effects of isolated (nonchemically linked) hard segments, as well as of too low postcuring temperatures, were demonstrated. Polyurethane ureas compare well with polyureas, and their synthesis can be a good way to cope with the lack of well-adapted commercial diamino-terminated prepolymers. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2331–2342, 1998  相似文献   

12.
A novel easily curing system of 2,2‐bis(4‐cyanatophenyl) propane(BACY) was prepared by employing 4,4′‐(Hexafluoroisopropylidene) Diphenol (BPAF) as modifier. The curing efficiency of BPAF was evaluated by means of differential scanning calorimetry (DSC) and Fourier translation infrared spectroscopy analysis (FTIR). It was found that the exothermic peak temperature (Tp) was 168 °C when the content of BPAF/BACY was 15/85 by weight, while the temperature of BACY was 215 °C under the same conditions when trace of cobalt(III) acetylacetonate(CoAt(III)) was added. Besides, BPAF/BACY system owned outstanding properties including excellent curing characteristics, high shear strength, remarkable dielectric properties and high thermal stability in contrast to BACY, 4,4′‐(1‐methylethylidene) bisphenol(BPA)/BACY, and nonylphenol(NoP)/BACY systems. Moreover, the properties of cured BPAF/BACY modified by different proportions of BPAF were studied in detail. It was shown that moderate BPAF was conducive to most properties of polycyanurate, and the optimal proportion of BPAF/BACY was 15/85 by weight. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44518.  相似文献   

13.
Epoxy‐terminated siloxane‐contained resin (BCDS/OBBA‐ETS) with high tensile strength and lap shear strength as well as good thermal stability was synthesized and characterized by 1H‐NMR and Fourier transform infrared spectroscopy. Carboxy‐capped disiloxane‐4,4′‐oxybis (benzoic acid) ester oligomer (BCDS/OBBA) was firstly prepared from the reaction between 1,3‐bis(chloromethyl)‐1,1,3,3‐tetramethyl‐disiloxane and 4,4′‐oxybis(benzoic acid) (OBBA) in N,N‐dimethylformamide in the presence of triethylamine. Then, the BCDS/OBBA oligomer was reacted with epichlorohydrin to obtain the title BCDS/OBBA‐ETS resin. Cured with liquid polyamide L‐651, or diethylenetriamine, the mechanical and thermal properties as well as the lap shear strength of the BCDS/OBBA‐ETS resin were evaluated. The results indicated that the BCDS/OBBA‐ETS resin exhibited good thermal stability below 200°C, and the glass transition temperature (Tg) was about 64°C after cured with L‐651. The tensile strength of same cured BCDS/OBBA‐ETS resin was 27.46 MPa with a stain at break of 42.11%, and the lap shear strength for bonding stainless steel was 18.59 MPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The formation of a polyurethane network from poly(propylene glycol) terminated with 4,4′-diphenylmethane diisocyanate and from 1,1,1-trimethylolpropane was investigated by light scattering and electron microscopy. The results indicate that the nonhomogeneities are formed in the system and that their size increases with increasing conversion up to gel point. The formation of nonhomogeneities is explained by strong intermolecular interactions with the participation of urethane groups; the existence of such interactions was confirmed on model systems by using inverse gas chromatography. An addition of dimethylformamide to the reaction mixture accelerates the reaction and suppresses nonhomogeneities.  相似文献   

15.
The kinetics of the curing reaction for a system of o‐cresol formaldehyde epoxy resin (o‐CFER) with 4,4′‐diaminodiphenyl ether (DDE) as a curing agent were investigated with differential scanning calorimetry (DSC). An analysis of the DSC data indicated that an autocatalytic behavior appeared in the first stages of the cure for the system, and this could be well described by the model proposed by Kamal, which includes two rate constants and two reaction orders (m and n). The overall reaction order (m + n) was 2.7–3.1, and the activation energies were 66.79 and 49.29 kJ mol?1, respectively. In the later stages, a crosslinked network was formed, and the reaction was mainly controlled by diffusion. For a more precise consideration of the diffusion effect, a diffusion factor was added to Kamal's equation. In this way, the curing kinetics were predicted well over the entire range of conversions, covering both the previtrification and postvitrification stages. The glass‐transition temperatures of the o‐CFER/DDE samples were determined via torsional braid analysis. The results showed that the glass‐transition temperatures increased with the curing temperature and conversion up to a constant value of approximately 370 K. The thermal degradation kinetics of the system were investigated with thermogravimetric analysis, which revealed two decomposition steps. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 182–188, 2004  相似文献   

16.
A new hyperbranched polymer (HBP) with a flexible aromatic skeleton and terminal epoxy groups was synthesized to improve the toughness of diglycidyl ether of bisphenol A. The HBP was characterized using nuclear magnetic resonance, Fourier transfer infrared spectroscopy and gel permeation chromatography. The effect of HBP on the thermomechanical and mechanical properties of modified epoxy systems was studied. For evaluating the efficiency of the modified epoxy systems, composite samples using glass fiber cloth were molded and tested. Using dynamic mechanical analysis, a slight reduction in glass transition temperature (Tg) with increasing HBP content was observed. Analysis of fracture surfaces revealed a possible effect of HBP as a toughener and showed no phase separation in the modified resin systems. The results showed that the addition of 15 phr HBP maximized the toughness of the modified resin systems with 215 and 40% increases in impact and flexural strengths, respectively. Tg and heat resistance of cured modified resin systems decreased slightly with an increase in HBP content and, at 15 phr HBP, only a 2.6% decrease in thermomechanical properties was observed. Meanwhile, a molded composite with HBP showed improved mechanical properties and retention rate at 150 °C as compared to that made with neat resin. © 2015 Society of Chemical Industry  相似文献   

17.
By the oxidation of liquid poly(1,2‐butadiene) (LPB) with H2O2/HCOOH, epoxidate poly(1,2‐butadiene) (ELPB) was obtained as a toughening agent to prepare diglycidyl ether bisphenol‐A (DGEBA) epoxy composites by using V115 polyamide(PA) as a cross‐linking agent. DGEBA, ELPB, and the composites were effectively cured by PA at 100°C for 2 h followed by postcuring at 170°C for 1 h. Thermal gravimetric analysis results in air and nitrogen atmosphere showed that the thermal stability of composites could be improved by the addition of ELPB. Compared with DGEBA/PA, the composites exhibited a decrease in strength at yield but an increase in strain at break with the increase in ELPB amount. The composite with 10% ELPB exhibited both thermal stability and tenacity superior to those of DGEBA/PA and composites with 5 and 20% ELPB, respectively. The improvements in thermal and mechanical properties of composites depended on the formation of Inter Penetrating Networks (IPN) among DGEBA/PA/ELPB and their distributions in the matrix. At an appropriate ELPB amount, the IPN, mostly made of DGEBA/PA/ELPB, may be distributed more evenly in the matrix; less ELPB resulted in the formation of IPN mainly made of DGEBA/PA; excessive addition of ELPB resulted in the local aggregation of ELPB/PA and phase separations. The toughening mechanism was changed from chemically forming IPN made of DGEBA/PA/ELPB to physically reinforcing DGEBA/PA by ELPB/PA with the increase in ELPB addition. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
4,4′‐Bismaleimidodiphenyl methane modified novolak resin/titania nanocomposites were prepared by the sol–gel process of tetrabutyl titanate in the presence of 4,4′‐bismaleimidodiphenyl methane modified novolak resin prepolymers with acetyl acetone as a stabilizer. These nanocomposite materials were characterized by Fourier transform infrared analysis, dynamical mechanical analysis, thermogravimetric analysis, transmission electron microscopy, and field emission scanning electron microscopy. Nanometer titania particles were formed in the novolak resin matrix, and the average original particle size of the dispersed phase in the nanocomposites was less than 150 nm, but particle aggregates of larger size existed. The introduction of the titania inorganic phase with a nanoscale domain size did not improve the glass‐transition temperature of the nanocomposites but lowered the thermal resistance of the material because of the incomplete removal of acetyl acetone coordinated with tetrabutyl titanate, and it improved the modulus of the material at lower temperatures (<200°C) but lowered the modulus at higher temperatures (>250°C). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 52–57, 2006  相似文献   

19.
The thermal behavior of mixtures of bis(4‐maleimidophenyl) (A) with bis(4‐isomaleimidophenyl)methane (C) and their mixture with 4,4′‐diaminodiphenyl methane (D) were investigated by differential scanning calorimetry. The study of the binary system A/C in different proportions led us to determine an eutectic mixture at a molar fraction of C in the range of 0.7–0.9. The ternary ACD mixtures showed themselves able to participate in three principal reactions: polyaddition, ring‐opening addition, and homopolymerization. In each mixture studied the addition of diamine changed the melting point and maximum polymerization temperatures in the sense of a general decrease. The properties of the networks were studied by thermal analysis and through evaluation of water absorption. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3547–3556, 2003  相似文献   

20.
A novel epoxidized hyperbranched poly(phenylene oxide) (EHPPO) is designed and synthesized successfully. The structure of EHPPO is characterized by Fourier transform infrared spectra‐ and quantitative 13C nuclear magnetic resonance spectrum. The synthesized EHPPO is added into diglycidyl ether of bisphenol A as a modifier in different ratios to form hybrids and cured by an anhydride curing agent. Effects of EHPPO addition on the properties of the cured hybrids are investigated. Thermal mechanical analysis results suggest that addition of EHPPO can increase the free volume of the cured hybrid materials. Dynamic mechanical analysis characterizations show that the crosslinking density increases with the increase in EHPPO content. Furthermore, addition of EHPPO results in an improvement in thermal and mechanical properties. The toughening mechanism is also discussed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号