首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a novel method to estimate the unknown parameters of continuous‐time systems with time delay. In the proposed method, the time delay and plant parameters are estimated separately. To estimate the time delay, a one‐dimensional searching method with variable step size is proposed to improve computational efficiency. The searching method consists of two stages: the coarse stage and the refined searching stage. To analyze the convergence of the searching method, the concept of significant interval is proposed. By defining the significant interval, a sufficient condition for global convergence of the searching method is provided. Based on the two‐stage searching method, a novel identification algorithm is developed in which the simplified refined instrumental variable for continuous‐time models algorithm is used to estimate the plant parameters. Simulation results demonstrate that the proposed identification method can estimate the unknown parameters of continuous‐time system with time delay efficiently. The estimation results under different noisy conditions verify the reliability and robustness of the proposed method. The applicability of the developed identification method is demonstrated by a practical example.  相似文献   

2.
This article studies reachable set estimation for linear discrete‐time systems with time delay, which are influenced by unknown but bounded disturbances. We propose a novel reachable set estimation method based on zonotopes for the considered systems. The proposed method can estimate real‐time reachable set under nonzero initial conditions. In order to increase estimation accuracy, we propose an iterative method to reduce the conservatism caused by the couplings between reachable sets at different instants. The effectiveness of the proposed method is illustrated by three numerical simulations.  相似文献   

3.
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.  相似文献   

4.
By using the Grünwald‐Letnikov (G‐L) difference method and the Tustin generating function method, this study presents extended Kalman filters to achieve satisfactory state estimation for fractional‐order nonlinear continuous‐time systems that containing some unknown parameters with the correlated fractional‐order colored noises. Based on the G‐L difference method and the Tustin generating function method, the difference equations corresponding to fractional‐order nonlinear continuous‐time systems are constructed respectively. The first‐order Taylor expansion is used to linearize the nonlinear functions in the estimated system, which provides the system model for extended Kalman filters. Using the augmented vector method, the unknown parameters are regarded as new state vectors, and the augmented difference equation is constructed. Based on the augmented difference equation, extended Kalman filters are designed to estimate the state of fractional‐order nonlinear systems with process noise as fractional‐order colored noise or measurement noise as fractional‐order colored noise. Meanwhile, the extended Kalman filters proposed in this paper can also estimate the unknown parameters effectively. Finally, the effectiveness of the proposed extended Kalman filters is validated in simulation with two examples.  相似文献   

5.
Time delay estimation is a general issue in both signal processing and process control fields. Neither offline step impulse response-based methods nor least squares methods in control field estimate time delay directly from the real running data. Although the methods for signal processing directly evaluate the delay from signals, such as correlation calculation, coherence analysis and least mean square methods, they are mainly suitable for two signals only different at a time delay part and an attenuation factor. In this article, an estimation method is proposed which is directly based on the real running input and output data of a control plant. The input and output signals of a plant show raw monotony from each other in many cases. According to this feature, we estimate the delay by comparing the trend of two signals. Furthermore, it is extended to an adaptive method for estimating piecewise time-varying delay by sliding window and forgetting factor. The experiments on real plant show the good performances of our methods. The simulation experiments demonstrate that our basic method performs better than CCF or coherence analysis for the nonlinear plant and the adaptive one performs better than least mean square methods for the signals with transfer function except time delay.  相似文献   

6.
This note considers global stabilization of a class of uncertain nonlinear output feedback systems with unstable internal dynamics. The coefficients which characterize the internal dynamics are allowed to be functions of system output, and the uncertainty of the system is characterized by an unknown constant parameter vector. The key step in the proposed control design is to estimate the internal state variables and impose control over them. The control design is presented first for systems without unknown parameters, and then for the systems with unknown parameters using adaptive control techniques.  相似文献   

7.
A neural network (NN)‐based robust adaptive control design scheme is developed for a class of nonlinear systems represented by input–output models with an unknown nonlinear function and unknown time delay. By approximating on‐line the unknown nonlinear functions with a three‐layer feedforward NN, the proposed approach does not require the unknown parameters to satisfy the linear dependence condition. The control law is delay independent and possible controller singularity problem is avoided. It is proved that with the proposed neural control law, all the signals in the closed‐loop system are semiglobally bounded in the presence of unknown time delay and unknown nonlinearity. A simulation example is presented to demonstrate the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
未知输出反馈非线性时滞系统自适应神经网络跟踪控制   总被引:6,自引:1,他引:6  
An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique. Neural networks are used to approximate unknown time-delay functions. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error. Based on Lyapunov-Krasoviskii functional, the semi-global uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number. The feasibility is investigated by an illustrative simulation example.  相似文献   

9.
An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique.Neural networks are used to approximate unknown time-delay functions.Delay-dependent filters are intro- duced for state estimation.The domination method is used to deal with the smooth time-delay basis functions.The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error.Based on Lyapunov-Krasoviskii functional,the semi-global uniform ultimate boundedness(SGUUB)of all the signals in the closed-loop system is proved.The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number. The feasibility is investigated by an illustrative simulation example.  相似文献   

10.
《国际计算机数学杂志》2012,89(10):1313-1322
Several explicit algorithms for tracking the parameters of second order models have been derived by the authors based on information available from the system time trajectory. In this paper the problem is recast in terms of recurrent integral-hybrid networks used in a hierarchical formation for both the reduced order model and to estimate the derivatives for parameter tracking. We relax the constant parameter condition by assuming linear time variation, the additional information is extracted from the system output trajectory by obtaining higher time derivatives which result in explicit functions to track the parameters online.  相似文献   

11.
An adaptive online parameter identification is proposed for linear single-input-single-output (SISO) time-delay systems to simultaneously estimate the unknown time-delay and other parameters. After representing the system as a parameterized form, a novel adaptive law is developed, which is driven by appropriate parameter estimation error information. Consequently, the identification error convergence can be proved under the conventional persistent excitation (PE) condition, which can be online tested in this paper. A finite-time (FT) identification scheme is further studied by incorporating the sliding mode scheme into the adaptation to achieve FT error convergence. The previously imposed constraint on the system relative degree is removed and the derivatives of the input and output are not required. Comparative simulation examples are provided to demonstrate the validity and efficacy of the proposed algorithms.  相似文献   

12.
For the dual-rate system, such as the process of space teleoperation whose control signals is partly determined by delayed feedback states, the state values and system parameters are coupled and influenced each other, which are hard to be estimated simultaneously. In this paper, we propose a novel method for this problem. Firstly, considering the asynchronism of the input and output sampling signals, an auxiliary model is modeled as a medium to the state and output functions. Secondly, the Kalman prediction algorithm is improved to estimate the state values at output signals of the dual-rate system. The general step is using the output estimated errors in original and auxiliary systems to modify the estimated state values of the auxiliary model, and then the unknown state values in original system is defined by the ones in auxiliary model. Based on improved Kalman algorithm and hierarchical identification algorithm, we present the detailed procedures of state estimation and parameter identification method for the dual-rate system. The processes of state estimation and parameter identification are calculated and modified alternately. Finally, the simulation results reveal that the state and parameters both approach to the real values and the state values converge faster than the parameters.  相似文献   

13.
This paper considers the problems of the simultaneous estimation of the system states and the unknown inputs for linear systems when the so-called observer matching condition is not satisfied. An auxiliary output vector is introduced so that the observer matching condition is satisfied with respect to it. A high-order sliding mode observer is considered to get the exact estimates of both the auxiliary outputs and their derivatives in a finite time based on the system measured outputs. After this, a reduced-order observer is constructed by using the estimated auxiliary outputs as the new system outputs. The reduced-order observer is able to asymptotically estimate the system states without suffering the influence of the unknown inputs. A kind of unknown input reconstruction method based on both the state and the auxiliary output derivative estimates is developed. Finally, a numerical simulation example is given to illustrate the effectiveness of the proposed methods.  相似文献   

14.
The identification of a special class of polynomial models is pursued in this paper. In particular a parameter estimation algorithm is developed for the identification of an input-output quadratic model excited by a zero mean white Gaussian input and with the output corrupted by additive measurement noise. Input-output crosscumulants up to the fifth order are employed and the identification problem of the unknown model parameters is reduced to the solution of successive triangular linear systems of equations that are solved at each step of the algorithm. Simulation studies are carried out and the proposed methodology is compared with two least squares type identification algorithms, the output error method and a combination of the instrumental variables and the output error approach. The proposed cumulant based algorithm and the output error method are tested with real data produced by a robotic manipulator.  相似文献   

15.
This paper develops a data‐based output feedback control method for a class of nonlinear systems, which have unknown mathematical models. The dynamic model of the system is assumed to be smooth, while the corresponding Jacobian matrices are constant matrices in each sampling period. We employ a zero‐order hold and a fast sampling technique to sample and measure the output signal. When these measured data contain white noises, we use the least squares method to estimate the corresponding Jacobian matrices. The feedback gain matrix is calculated and adjusted adaptively in real time according to them. Theoretical analysis on the convergence condition is provided, and simulation results are used to demonstrate the feasibility of this method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
丁盛 《计算机应用》2014,34(1):236-238
针对伪线性输出误差回归系统的辨识模型新息信息向量存在不可测变量的问题,首先通过构造一个辅助模型,用辅助模型的输出代替未知中间变量,推导得到的基于辅助模型的递推最小二乘参数估计算法计算量较大,但算法的辨识效果不佳。进一步采用估计的噪声模型对系统观测数据进行滤波,使用滤波后的数据进行参数估计,从而推导提出了基于数据滤波的递推最小二乘参数估计算法。仿真结果表明,所提算法能够有效估计伪线性回归线性输出误差系统的参数。  相似文献   

17.
This paper presents an adaptive neural tracking control approach for uncertain stochastic nonlinear time‐delay systems with input and output constraints. Firstly, the dynamic surface control (DSC) technique is incorporated into adaptive neural control framework to overcome the problem of ‘explosion of complexity’ in the control design. By employing a continuous differentiable asymmetric saturation model, the input constraint problem is solved. Secondly, the appropriate Lyapunov‐Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown time‐delay terms, RBF neural network is utilized to identify the unknown systems functions, and barrier Lyapunov functions (BLFs) are designed to avoid the violation of the output constraint. Finally, based on adaptive backstepping technique, an adaptive neural control method is proposed, and it decreases the number of learning parameters. Using Lyapunov stability theory, it is proved that the designed controller can ensure that all the signals in the closed‐loop system are 4‐Moment (or 2 Moment) semi‐globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two simulation examples are provided to further illustrate the effectiveness of the proposed approach.  相似文献   

18.
一类非线性系统的微分平滑反步自适应输出反馈控制   总被引:1,自引:1,他引:0  
研究了一类含不确定参数且存在未知扰动的严反馈非线性系统输出反馈控制问题,设计了一种新型的反步递推(Backstepping)自适应控制器.为实现输出反馈,设计过程引入了虚拟的全维状态观测器.由于Backstepping的虚拟控制量与未知参数逼近值及其高阶导数有关,为此通过微分平滑算法对原系统进行相应的动态扩展.在稳定性分析中,利用Lyapunov定理,得到了系统全局一致有界稳定的条件,并求出系统的稳态跟踪误差.最后给出的仿真算例验证了本文方法的有效性和可行性.  相似文献   

19.
Stability and L2 (l2)-gain of linear (continuous-time and discrete-time) systems with uncertain bounded time-varying delays are analyzed under the assumption that the nominal delay values are not equal to zero. The delay derivatives (in the continuous-time) are not assumed to be less than q<1. An input–output approach is applied by introducing a new input–output model, which leads to effective frequency domain and time domain criteria. The new method significantly improves the existing results for delays with derivatives not greater than 1, which were treated in the past as fast-varying delays (without any constraints on the delay derivatives). New bounded real lemmas (BRLs) are derived for systems with state and objective vector delays and norm-bounded uncertainties. Numerical examples illustrate the efficiency of the new method.  相似文献   

20.
In this paper, an adaptive fuzzy robust output feedback control approach is proposed for a class of SISO nonlinear strict-feedback systems with unknown sign of high-frequency gain and the unmeasured states. The nonlinear systems addressed in this paper are assumed to possess the unmodeled dynamics, dynamical disturbances and unknown nonlinear functions, where the unknown nonlinear functions are not linearly parameterized, and no prior knowledge of their bounds is available. In the recursive designing, fuzzy logic systems are used to approximate the unknown nonlinear functions, K-filters are designed to estimate the unmeasured states, and a dynamical signal and Nussbaum gain functions are introduced to handle the unmodeled dynamics and the unknown sign of the high-frequency gain, respectively. Based on Lyapunov function method, a stable adaptive fuzzy output feedback control scheme is developed. It is mathematically proved that the proposed adaptive fuzzy control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded, the output converges to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated by the simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号