首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
For very thin shell-like structures it is common to ignore bending effects and model the structure using simple membrane theory. However, since the thickness of the membrane is not modeled explicitly in simple membrane theory it is not possible to use the three-dimensional strain energy function directly. Approximations must be introduced like the assumptions of: no thickness changes, generalized plane stress or incompressibility. In contrast, the theory of a Cosserat generalized membrane uses the three-dimensional strain energy function directly, it includes both thickness changes and shear deformation and it allows contact conditions to be formulated on the interface of the membrane with another body instead of on the middle surface of the membrane. A specific nonlinear contact problem is used to study these effects and comparison is made with solutions of a hierarchy of theories which include different levels of deformation through the thickness of the membrane and different formulations of the contact conditions. The results indicate that within the context of a simple membrane the assumption of generalized plane stress is best for this problem and that a generalized contact condition extends the range validity of the simple membrane solution to thicker membranes.  相似文献   

2.
3.
基于一般概率摄动有限元法,解决了具有随机路径的振动传递路径系统的响应分析问题.应用Kronecker代数,矩阵微分理论,向量值和矩阵值函数的二阶矩技术,矩阵摄动理论和概率统计方法,提出了振动传递路径系统的随机响应分析方法,在考虑工程中的不确定因素以后,在时域内清晰地描述了振动传递路径的随机响应.  相似文献   

4.
对任意位移边界条件下的旋转周期对称结构,由拉格朗日乘子法建立有限元方程。在对称适应的坐标系下,由结构刚度矩阵的块循环性质,利用群变换给出一种新的求解方法。数值验证给出令人满意的结果。  相似文献   

5.
复杂加载下混凝土的弹塑性本构模型   总被引:1,自引:0,他引:1  
万征  姚仰平  孟达 《力学学报》2016,48(5):1159-1171
混凝土材料在不同应力路径下或复杂加载条件下会表现出差异性显著的应力应变关系,在小幅循环加载条件下,其应力应变关系会表现出类似于弹性变形的滞回曲线.在不同应力水平下,混凝土的应力应变关系以及破坏特性都具有静水压力相关特点,即随着静水压力增大,各向异性强度特性弱化.此外,混凝土受压及受拉破坏机理不同,因而对应于混凝土硬化损伤亦有不同,即可分为受压硬化损伤,受拉硬化损伤及两者的混合硬化损伤类型.基于Hsieh模型,对该模型进行了三点改进.(1)针对小幅循环加载下混凝土无塑性变形的试验规律,而模型中在应力水平较低的循环加载条件下始终存在塑性变形的预测问题,采用在边界面模型框架下,设置了应力空间的弹性域,初始屈服面与后续临界状态屈服面几何相似的假定.(2)基于广义非线性强度准则将原模型采用变换应力方法将其推广为三维弹塑性本构模型,采用变换后模型可合理的考虑不同应力路径对于子午面以及偏平面上静水压力效应形成的影响,并避免了边界面应力点奇异问题.(3)分别对拉压两种加载损伤模式建议了相应的硬化参数表达式,可分别用于描述上述加载中产生的应变软化及强度退化行为.基于多种加载路径模拟表明:所建立的三维弹塑性本构模型可合理地用于描述混凝土的一般应力应变关系特性.   相似文献   

6.
Investigated is a crack problem for an array of collinear microcracks in composite matrix. Inclusions are situated in between the neighbouring microcracks tips and exhibit different elastic properties than matrix. The problem is solved using the technique of distributed dislocations. A developed approximate fundamental solution for a single dislocation lying in a general point between inclusions is employed in the distribution of continuously distributed dislocation to cracks modelling. Stress intensity factor is calculated for various cracks/inclusions geometries and elastic moduli mismatches. Stability and/or instability of the straight microcrack paths is investigated for slowly growing microcracks with inclusions located in between the neighbouring microcracks tips. Applications to periodic microcrack tunnelling and microcracks weakening ahead of the main crack are discussed.  相似文献   

7.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

8.
9.
IntroductionAsymplecticsystematicmethodology[1- 3]forelasticitywasestablishedbyZhongWan_xie .Hepresentedcreativelythedualvectorsandthesymplecticorthogonalrelationshipandopenedaworkplatformparalleledtothetraditionalelasticity[4 - 9].AnewdualvectorandanewdualdifferentialmatrixLwerepresentedforasymplecticsystematicmethodologyfortwo_dimensionalelasticityandaneworthogonalrelationshipwasdiscoveredforisotropicplaneproblems[4 ]byLuoJian_hui.Theneworthogonalrelationshipisgeneralizedfororthotropicelas…  相似文献   

10.
A generalized work–energy method for the linear and geometrically nonlinear static analysis of thin isotropic plate with a cutout is presented. The plate geometry is divided into few quadrilateral segments. Each segment is defined by four curved edges and the natural coordinates in conjunction with the Cartesian coordinates are used in formulating the stiffness matrix and the load vector. Two different sets of interpolating functions are used for the geometric and displacement representations respectively. The matrix equation of equilibrium is derived from the variational principle. By exploiting the geometric symmetry, numerical results are obtained for the following examples: (a) square plate with circular opening at the centre and (b) circular plate with circular or square inner boundary. The plates are subjected to uniformly distributed load and both the pinned and fixed outside boundary conditions are considered. Very good comparison is observed between the present results and those published in the literature for the fixed square plate without an opening. Effects of the opening size on the displacement are examined in detail.  相似文献   

11.
Non-linear deformation paths obtained using uniaxial tension followed by simple shear tests were performed for a 1050-O aluminum alloy sheet sample in different specimen orientations with respect to the material symmetry axes. In order to eliminate the time influence, the time interval between the first and second loading steps was kept constant for all the tests. Monotonic uniaxial tension tests interrupted during loading were used to assess the recovery that takes place during this time. In order to eliminate the influence of the initial plastic anisotropy and to compare the results as if the material hardening was isotropic, the flow stress was represented as a function of the plastic work. The behavior of the material after reloading was analyzed in terms of dislocation microstructure and crystallographic texture evolutions. For more quantitative assessment, the full constraints [Int. J. Plasticity 13 (1997) 75] and visco-plastic self-consistent [Acta Metall. Mater. 41 (1993) 2611] polycrystal models were used to simulate the material behavior in the non-linear deformation paths. Based on experimental and simulation results, the relative contributions of the crystallographic texture and dislocation microstructure evolution to the anisotropic hardening behavior of the material were discussed.  相似文献   

12.
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the “exact” solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.  相似文献   

13.
A theory suitable for studying pulses propagating through a layered fluid-saturated porous medium is presented. Biot's theory is used to describe the constitutive equation of a fluid-saturated porous solid. Since fast and slow compressional waves exist in a Biot solid even at normal incidence, there is mode conversion at the interface and, therefore, the transmission and reflection coefficients are 2x2 matrices. We use matrix methods in developing the solution of the wave propagation problem. A generalized ray expansion algorithm is obtained by using the Gauss-Seidel matrix iterative method. The arrivals of the fast and the slow waves are easily identified. A compact computational algorithm is developed using combinatorial analysis and the Cayley-Hamilton theorem.  相似文献   

14.
Many finite element (FEM) formulations have been based on stress potentials defined in the stress field. Nevertheless, there are formulations where potentials defined in the strain-rate field are especially convenient to implement. These include rigid-plastic formulations based on minimum plastic work paths, which can be used for process design as well as for process analysis. Based on a strain-rate potential recently proposed for anisotropic materials exhibiting orthotropic symmetry, a formulation for sheet forming process analysis has been developed using a Cartesian coordinate system in this paper. An efficient formulation to account for material rotation is also included. Earing predictions made for a cup drawing test of a 2090-T3 aluminum-lithium alloy sheet showed good agreement with experiments. However, some discrepancies were observed between predicted and experimental thickness strain and cup height directional trends. The cause of the discrepancies was discussed using a simple analysis based on Lankford (or plastic strain ratio, r) values.  相似文献   

15.
A refined membrane-like theory is used to describe bending of a semi-infinite pre-stressed incompressible elastic plate subjected to an instantaneous impulse loading at the edge. A far-field solution for the quasi-front is obtained by using the method of matched asymptotic expansions. A leading-order hyperbolic membrane equation is used for an outer problem, whereas a refined (singularly perturbed) membrane equation of an inner problem describes a boundary layer, which smoothes a discontinuity predicted by the outer problem at the wave front. The inner problem is then reduced to one-dimensional by an appropriate choice of inner coordinates, motivated by the wave front geometry. Using the inherent symmetry of the outer problem, a solution for the quasi-front is derived that is valid in a vicinity of the tip of the wave front. Pre-stress is shown to affect geometry and type of the generated quasi-front; in addition to a classical receding quasi-front the pre-stressed plate can support propagation of an advancing quasi-front. Possible responses may even feature both types of quasi-front at the same time, which is illustrated by numerical examples. The case of a so-called narrow quasi-front, associated with a possible degeneration of contribution of singular perturbation terms to the governing equation, is studied qualitatively.  相似文献   

16.
17.
The problem is considered of thermal convection in a saturated porous medium contained in an infinite vertical channel with differentially heated sidewalls. The theory employed allows for different solid and fluid temperatures in the matrix. Nonlinear energy stability theory is used to derive a Rayleigh number threshold below which convection will not occur no matter how large the initial data. A generalized nonlinear analysis is also given which shows convection cannot occur for any Rayleigh number provided the initial data is suitably restricted.  相似文献   

18.
This paper presents analytical conditions of self-equilibrium and super-stability for the regular truncated tetrahedral tensegrity structures, nodes of which have one-to-one correspondence to the tetrahedral group. These conditions are presented in terms of force densities, by investigating the block-diagonalized force density matrix. The block-diagonalized force density matrix, with independent sub-matrices lying on its leading diagonal, is derived by making use of the tetrahedral symmetry via group representation theory. The condition for self-equilibrium is found by enforcing the force density matrix to have the necessary number of nullities, which is four for three-dimensional structures. The condition for super-stability is further presented by guaranteeing positive semi-definiteness of the force density matrix.  相似文献   

19.
工程中已发展了许多矩阵特征值问题的近似求解方法,由Duncley法给出固有频率基频的下界,Rayleigh-Ritz近似法建立的方程,给出基频的上界,以及通常的矩阵迭代法给出的矩阵的固有频率程序中是以某一元素迭代前后比值确定的,这样实际上很难说是上界或下界。Collatz包含定理仅适用于对称标准特征值问题,可以给出特征值上、下界。采用矩阵Cholesky三角分解的原理,把Collatz包含定理推广到适用于具有对称矩阵的一般结构系统的广义征值问题,对于分解刚度矩阵或质量矩阵可给出基频,或最高因有频率。为了验证理论的正确性,给出了算例。  相似文献   

20.
A somewhat generalized numerical procedure is used in this paper to study the problem of wave scattering by circumferential cracks in composite pipes. The study is motivated by the need to develop a model for the quantitative, ultrasonic non-destructive evaluation of cracks in pipes. For this purpose, a stiffness-based Rayleigh–Ritz type approach is employed first to obtain the approximate wave numbers and wave modes. Using the wave function expansions of the incident and scattered fields in the axial direction and decomposing the problem into separate symmetric and anti-symmetric problems, a three-dimensional wave scattering problem is reduced to two, independent two-dimensional problems over the circular cross-section. Both these problems can be reduced further to quasi-one-dimensions by discretizing the cross-section into finite elements and using a transfer matrix approach in the circumferential direction. This simplification greatly reduces the computational time. A comparison of the results for an isotropic pipe demonstrates the reliability and accuracy of the modified numerical procedure. Numerical results for the reflection and transmission coefficients of different incident wave modes are also presented for a 2-ply composite pipe with a crack. The crack may have an arbitrary circumferential length and radial depth. Simple extrapolations from one wave to another wave, separately incident on a crack, are demonstrated to be impossible due to different mode conversions by the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号