首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we report the synthesis of π‐conjugated network polymers including unique fluorescent units via palladium‐catalyzed direct (C? H) arylation polycondensation of 1,2,4,5‐tetrafluorobenzene with tetrabromoarenes. The obtained polymers, including tetraphenylethene (TPE) or pyrene (PYR) units, had microporous structures with the specific Brunauer–Emmett–Teller (BET) surface areas at 508 and 824 m2 g?1, respectively. These polymers possessed narrow pore distributions (<15 nm). These analyses supported that π‐conjugated microporous polymers (CMPs) were synthesized by the direct arylation. Similar to the result of BET surface areas, carbon capture capacity of CMP based on PYR unit was higher than that of CMP based on TPE unit. Because the nitrogen capture capacity of these CMPs was low (≈ 0), selectivity of carbon dioxide adsorption was very high. TPE is a typical aggregation‐induced emission unit but PYR is an aggregation‐caused quenching (ACQ) molecule. The incorporation of TPE unit into the microporous polymer gave green‐colored fluorescence (Φ = 0.12). The polymer including PYR units also showed the green‐colored fluorescence (Φ = 0.05) even though the ACQ property. These synthesized CMPs exhibited characteristic solvatofluorochromism. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3862–3867  相似文献   

2.
Palladium‐catalyzed direct arylation polycondensation afforded a bithiazole‐based homopolymer and donor–acceptor (D–A)‐type copolymers where the bithiazole unit served as an acceptor unit. The results of polymerization strongly depended on the solubility of the polymers; long alkyl chain substituents were required for the formation of high‐molecular‐weight polymers in high yields owing to low solubility of the bithiazole‐based polymers. X‐ray diffraction studies revealed that the obtained polymers were highly crystalline. In particular, a well‐ordered lamellar structure was observed in the D–A‐type copolymer with flexible alkyl chains after thermal annealing, presumably owing to the combination of interchain interactions between the bithiazole units and the electrostatic D–A interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1396–1402  相似文献   

3.
4.
Thienoisoindigo (TIIG) has emerged as an attractive building block for high‐performance organic optoelectronic devices. Here we report the first synthesis of a series of π‐conjugated TIIG‐based small molecules and alternating copolymers via direct C–H arylation, which enables the efficient synthesis without use of flammable and toxic orgametallic reagents in fewer steps compared Suzuki and Stille coupling. The direct arylation coupling between TIIG and two respective mono‐bromo aryl reactants clearly shows that the α‐H is more reactive than the β‐H in the thiophene unit of TIIG. The high regioselectivity of TIIG monomer warrants the successful synthesis of high‐quality alternating copolymers with minimal structural defects. PTIIG‐BT polymer synthesized via direct arylation polymerization (DAP) showed comparable molecular weight and hole mobility than the same polymer previously synthesized via Suzuki coupling. Moreover, the two new polymers (PTIIG‐TF and PTIIG‐2FBT) synthesized via DAP showed hole mobility up to 10?3 cm2 V?1 s?1 in FET devices fabricated and tested under ambient conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2015–2031  相似文献   

5.
Poly(5,6‐difluoro‐2,1,3‐benzothiadiazole‐alt‐9,9‐dioctylfluorene) was successfully synthesized via direct arylation polycondensation of 5,6‐difluoro‐2,1,3‐benzothiadiazole and 2,7‐dibromo‐9,9‐dioctylfluorene. The reaction conditions were optimized, and a polymer with number‐average molecular weight (Mn) of 41,000 was obtained by using Pd(OAc)2, PtBu2Me‐HBF4, pivalic acid, K2CO3, and toluene as catalyst, ligand, additive, base, and solvent, respectively. The polycondensation was also performed with 5,6‐dioctyloxy‐2,1,3‐benzothiadiazole or 2,1,3‐benzothiadiazole as the comonomer, and the results indicate that the introduction of electron‐withdrawing fluorine atoms at the ortho‐positions to the C? H bonds is essential for the reactivity of the direct arylation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2367–2374  相似文献   

6.
We present the synthesis and characterization of a new family of perfectly alternating conjugated polymers, obtained through different methodologies (Stille, Direct Arylation, and Horner–Wadsworth–Emmons polymerizations). The polymers comprise either 2,5‐dialkoxybenzene or benzodithiophene electron rich units, and 1,2,4,5‐tetrafluorobenzene as the electron‐deficient unit, eventually separated by a vinylene bridge, if suitable monomers and HWE polymerization procedures are used. As shown by NMR spectroscopy, the introduction of the fluorinated aromatic units brings complications in the polymer stereodefinition in the HWE polymerization, and regiodefinition in the case of the Direct Arylation. The polymers show moderate degrees of polymerization (up to 10 repeating alternating units in the backbone), which are however significant enough to unravel interesting properties such as energy HOMO–LUMO gaps and aggregation behavior in solution at room temperature. In depth calculations fully confirmed the aggregation tendency, highlighting the key role of the benzodithiophene as the donor component when in combination with the tetrafluorobenzene unit. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1601–1610  相似文献   

7.
Direct arylation polymerization (DArP) is an emerging alternative to Stille and Suzuki polymerizations. This method is attractive as it allows preparation of high‐molecular‐weight conjugated polymers in good yield without the need to metallate monomers. Despite this promise, for poly(3‐hexylthiophene) (P3HT) and related polymers that have β‐protons on the thiophene ring, DArP is known to produce β‐defects, which make the polymer properties different from polymers produced by traditional methods. Here, we demonstrate that DArP conditions based on simple, inexpensive, and bench‐stable reagents can be tuned to limit the amount of defects and produce P3HT with properties remarkably similar to Stille P3HT. Specifically, lowering the reaction temperature, lowering the amount of catalyst, and using a bulkier carboxylate ligand is critical. Optimized conditions include reacting 2‐bromo‐3‐hexylthiophene with 0.25 mol % of Pd(OAc)2, 1.5 equivalents of K2CO3, and 0.3 equivalents of neodecanoic acid in N,N‐dimethylacetamide at 70 °C and give DArP P3HT with ~60% yield, regioregularity of 93.5%, molecular weight of 20 kDa, polydispersity of 2.8, and melting point of 217 °C, providing a very close match to Stille P3HT, which is obtained with 70–80% yield, 91–94% regioregularity, molecular weight of 15–25 kDa, polydispersity of 2.5–2.8, and melting point of 214–221 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2660–2668  相似文献   

8.
Poly(3‐hexylselenophene)s (P3Hs) with high regioregularity (RR = 92–96%), that is, regioregular poly(3‐hexylselenophene)s (rr‐P3HSs), have been synthesized under the phosphine‐free direct arylation conditions in the presence of PdCl2 as a precatalyst. rr‐P3HS with the high molecular weight (Mn ~ 10,000) was obtained as a result of screening of direct arylation conditions. Subsequently, the influences of primary structure, molecular weight (Mn = 3900–10,000) and regioregularity (RR = 57–96%), on optical properties and self‐assembled nanostructure of P3HS were investigated. X‐ray diffraction demonstrated that molecular weight, regioregularity, and preparation method of films dominate the crystallization behavior of P3HS. Among these parameters, it was evident that a high degree of regioregularity was the most fundamental contributor to achieve pure crystalline nanostructure. Furthermore, nanoassembly based on pure crystalline nanostructure, such as non‐woven fibrous and bundle‐like spherulitic self‐assembled nanostructures, was successfully prepared in rr‐P3HS, respectively, by appropriate modulation of the aforementioned parameters. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2749–2755  相似文献   

9.
tBu3 PPd(Ph)Br ( 1 )‐catalyzed Suzuki‐Miyaura coupling polymerization of 2‐(4‐hexyl‐5‐iodo‐2‐thienyl)‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 2 ) was investigated. Monomer 2 was polymerized with 1 at 0 °C in the presence of CsF and 18‐crown‐6 in THF containing a small amount of water to yield P3HT with a narrow molecular weight distribution and almost perfect head‐to‐tail regioregularity. The values increased up to 11 400 g · mol−1 in proportion to the feed ratio of 2 to 1 . The MALDI‐TOF mass spectra showed that P3HT with moderate molecular weight uniformly had a phenyl group at one end and a hydrogen atom at the other, indicating involvement of a catalyst‐transfer mechanism. Successive 1 ‐catalyzed polymerization of fluorene monomer 3 and then 2 yielded a well‐defined block copolymer of polyfluorene and P3HT.

  相似文献   


10.
In this work, we investigate the influence of the amide solvent chemical structure on the properties of poly(3‐hexylthiophene) (P3HT) prepared via direct arylation polymerization (DArP). Our findings indicate that for successful polymerization the amide must possess an acyclic aliphatic structure since cyclization of an amide results in a complete shutdown of DArP reactivity as evidenced by failed polymerization in N‐methylpyrrolidone, whereas the presence of an aromatic motif renders the amide solvent susceptible to C? H activation and leads to incorporation of the solvent structure into the P3HT backbone, as demonstrated on the example of N,N‐diethylbenzamide. Additionally, we observed that the steric bulk of alkyl substituents on both the nitrogen atom and the carbonyl group within the amide structure has to be delicately balanced for optimal DArP reactivity. In the optimal cases, P3HT is obtained in high yield, with high molecular weight and contains a minimal amount of structural defects. The obtained polymer samples were comprehensively studied in terms of their chemical structure, optical, thermal and solid‐state properties in thin films using GPC analysis, 1H NMR, MALDI, UV–vis, GIXRD spectroscopy, and DSC. We additionally note a drastic difference of the amide solvent effect between DArP and Stille polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2494–2500  相似文献   

11.
12.
In this work, we present a powerful set of synthetic strategies aimed at minimization of auxiliary reagent loading for direct arylation polymerization (DArP) of 2‐bromo‐3‐hexylthiophene. As such, we report efficient lowering of Pd(OAc)2 catalyst loading as well as loading of other auxiliary reagents, such as neodecanoic acid and N,N‐dimethylacetamide. Unprecedented low loadings of catalyst down to 0.0313% (313 ppm) were achieved, while producing polymer in high yield (91% after Soxhlet extraction), with a high molecular weight (24.2 kDa) and carefully controlled chemical structure thus making the optimized DArP protocol significantly more cost‐effective, convenient, sustainable, and environmentally friendly. The resulting polymer samples were thoroughly investigated in terms of their chemical structure as well as optical, thermal, chain ordering and electronic properties using GPC analysis, 1H NMR, MALDI, UV–vis, GIXRD spectroscopy, DSC, and SCLC hole mobility measurements. The results demonstrate that the reagent lowering strategies increase the polymer regioregularity from 94.6 to 96.5% as evidenced by 1H NMR spectra and corroborated by GIXRD, DSC, and UV–vis measurements. Additionally, polymer samples obtained at low reagent loading are more uniformly proton‐terminated as evidenced by 1H NMR and MALDI end‐group analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1492–1499  相似文献   

13.
A naphthalenediimide (NDI)‐based conjugated polymer was synthesized by a two‐step direct C‐H arylation sequence. In the first step, two ethylenedioxythiophene units were coupled to NDI by direct arylation. In the second step, the direct arylation polycondensation of the monomer, formed in the first step, with 2,7‐dibromo‐9,9‐dioctylfluorene afforded the corresponding NDI‐based conjugated polymer ( PEDOTNDIF ) with molecular weight of 21,500 in 91% yield. The optical and electrochemical properties of the polymer were evaluated. The polymer showed ambipolar behavior in organic field‐effect transistors (OFETs). The electron mobility of PEDOTNDIF was estimated to be 2.3 × 10?6 cm2 V?1 s?1 using an OFET device with source‐drain (S‐D) Au electrodes. A modified OFET device with S‐D MgAg electrodes increased the electron mobility for PEDOTNDIF to 1.0 × 10?5 cm2 V?1 s?1 due to the more suitable work function of these electrodes, which reduced the injection barrier to the semiconducting polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1401–1407  相似文献   

14.
As a newly emerged protocol for the synthesis of conjugated polymers, direct arylation polymerization (DArP) is an environmentally friendly and cost-effective alternative to traditional methods of polymerization. DArP efficiently yields conjugated polymers with high yield and high molecular weight. However, DArP is also known to produce defects in polymer chemical structure. Together with molecular weight and polydispersity, these defects are considered to be important parameters of polymer structure and they have a strong impact on optical, electronic and thermal properties of conjugated polymers. The four major classes of conjugated polymer defects inherent for DArP have been identified: homocoupling regiodefects, branching defects, end group defects, and residual metal defects. To have a precise control over the polymer properties, it is important to understand what causes the defects to form during the polymerization process and be able to control their content. Here within the scope of current literature, we discuss in detail the definition and origin of all these defects, their influence on polymer properties and effective means to control the defects through fine tuning of the DArP reaction parameters. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 135–147  相似文献   

15.
Conjugated copolymers based on benzodithiophene (BDT) derivatives and thiophene‐quinoxaline‐thiophene (TQT) segments represent an efficient class of light harvesting materials for organic photovoltaic (OPV) applications. Commonly, BDT‐TQT copolymers are synthesized by Stille cross‐coupling polymerization. In this study, alkoxy and thienyl functionalized alternating BDT‐alt‐TQT copolymers are synthesized by direct arylation polymerization (DArP), using Ozawa conditions. An extensive optimization of the reaction conditions such as the catalytic system, solvent, temperature, base, and the concentration of the catalyst is accomplished. The optical and electrochemical properties of the copolymers obtained by DArP are compared to the reference polymers synthesized by Stille cross‐coupling polymerization. Finally, the optimized BDT‐alt‐TQT copolymers are incorporated into organic solar cells as electron donors. The solar cells of the DArP copolymers exhibit power conversion efficiencies up to 80% (rel.) of their Stille cross coupling analogues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1457–1467  相似文献   

16.
Conditions for selective palladium‐catalyzed decarboxylative 2‐arylation of 3‐substituted thiophene and furan derivatives bearing an ester at C2 position have been established. By using 2 mol% phosphine‐free Pd(OAc)2 as the catalyst and a mixture of KOH and K2CO3 as the bases, in dimethylacetamide, moderate to good yields of the desired 2‐arylated products were obtained. A range of functional groups such as nitrile, nitro, formyl or acetyl on the aryl bromides was tolerated. This method allows us to employ in some cases more convenient reactants in terms of cost or physical properties (boiling point) for arylations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
18.
A new and efficient synthesis of 8H‐benzo[e]phenanthro[1,10‐bc]silines from 2‐((2‐(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C?H/C?H coupling through a new mode of 1,4‐palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

19.
The reaction of 2,5‐diiodo‐1,4‐benzenedicarbonyl chloride, C6H2I2(COCl)2p, with 4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO‐ol) gave I–Ph(COO–TEMPO)2–I, Monomer‐1. Pd‐catalyzed polycondensation of Monomer‐1 with Me3Sn‐Th‐SnMe3 (2,5‐bis(trimethylstannyl)thiophene) and Bu3Sn–CH = CH–SnBu3 (1,2‐bis‐(tributylstannyl)ethylene) gave the corresponding π‐conjugated polymers, Polymer‐1 and Polymer‐2, respectively. Monomer‐1 was converted to a diethynyl compound, H–C ≡ C–Ph(COO–TEMPO)2–C ≡ C–H (Monomer‐1'), and Pd‐catalyzed polycondensation between Monomer‐1 and Monomer‐1' gave a π‐conjugated poly(arylene ethynylene) type polymer, Polymer‐3. According to the expansion of the π‐conjugation system by the polymerization, the UV–vis peaks of Monomer‐1 (λmax = 323 nm) and Monomer‐1' (327 nm) are shifted to longer wavelengths (λmax = 365 nm, 385 nm, and 396 nm for Polymer‐1, Polymer‐2, and Polymer‐3, respectively). Polymer‐1–Polymer‐3 showed ESR signals at about g = 2.01 with reasonable intensities. They are electrochemically active and showed a peak current anodic (oxidation) peak at about 0.9 V versus Ag/AgCl, which is reasonable for TEMPO polymers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The polycondensation reaction of 3,4‐ethylenedioxythiophene with 2,7‐dibromo‐9,9‐dioctylfluorene via Pd‐catalyzed direct arylation gives poly[(3,4‐ethylenedioxythiophene‐2,5‐diyl)‐(9,9‐dioctylfluorene‐2,7‐diyl)]. The reaction conditions are optimized in terms of the Pd precatalysts, reaction time, and carboxylic acid additives. The combination of 1 mol% Pd(OAc)2 and 1‐adamantanecarboxylic acid as an additive is the optimized catalytic system, and it yields the corresponding polymer with a molecular weight of 39 400 in 89% yield. The polycondensation reaction, followed by an end‐capping reaction, effectively provides a linear polymer without Br terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号