首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous full‐interpenetrating polymer networks (full‐IPNs) based on blocked polyurethane (PU) and vinyl ester (VE) have been prepared. The static and dynamic properties of these IPNs have been examined. Results show that the tensile strength and flexural strength of IPNs increased with blocked PU content to a maximum value at 7.5 wt % PU content and then decreased. The tensile modulus, flexural modulus, and hardness of IPNs decreased with increasing blocked PU content. The impact strength of IPNs increased with increasing blocked PU content. The tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (kaolin) content to a maximum value at 20 to 25 phr filler content and then decreased. The higher the filler content, the greater the hardness, and the lower the impact strength of IPNs. The tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs increased with increasing VE initiator content. The dynamic technique was used to determined the damping behavior across a temperature range. Results show that the glass transition temperature (Tg) of IPNs are shifted inwardly compared with pure PU and VE, which indicated that the blocked PU–VE IPNs showed excellent compatible. Meanwhile, the glass transition temperature was shifted to a higher temperature with increased filler content. The dynamic storage modulus (E′) of IPNs increased with increasing VE and filler content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1977–1985, 1999  相似文献   

2.
The mechanical properties of blocked polyurethane(PU)/epoxy interpenetrating polymer networks (IPNs) were studied by means of their static and damping properties. The studies of static mechanical properties of IPNs are based on tensile properties, flexural properties, hardness, and impact method. Results show that the tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs decreased with increase in blocked PU content. The impact strength of IPNs increased with increase in blocked PU content. It shows that the tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (CaCO3) content to a maximum value at 5, 10, 20, and 25 phr, respectively, and then decreased. The higher the filler content, the greater the hardness of IPNs and the lower the notched Izod impact strength of IPNs. The glass transition temperatures (Tg) of IPNs were shifted inwardly compared with those of blocked PU and epoxy, which indicated that the blocked PU/epoxy IPNs showed excellent compatibility. Meanwhile, the Tg was shifted to a higher temperature with increasing filler (CaCO3) content. The dynamic storage modulus (E′) of IPNs increased with increase in epoxy and filler content. The higher the blocked PU content, the greater the swelling ratio of IPNs and the lower the density of IPNs. The higher the filler (CaCO3) content, the greater the density of IPNs, and the lower the swelling ratio of IPNs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1826–1832, 2006  相似文献   

3.
The thermodynamic miscibility and thermal and dynamic mechanical behaviour of semi‐interpenetrating polymer networks (semi‐IPNs) of crosslinked polyurethane (PU) and linear poly(hydroxyethyl methacrylate) (PHEMA) have been investigated. The free energies of mixing of the semi‐IPN components have been determined by the vapour sorption method and it was established that the parameters are positive and depend on the amount of PHEMA in the semi‐IPN samples. Thermal analyses glass transition temperatures evidenced two in the semi‐IPNs in accordance with the investigation of the thermodynamic miscibility of these systems. Dynamic mechanical analysis revealed a pronounced change in the viscoelastic properties of the PU‐based semi‐IPNs with different amounts of PHEMA in the samples. The semi‐IPNs have two distinct tan δ maxima related to the relaxations of the two polymers in their glass temperature domains. The temperature position of PU relaxation maximum tan δ is invariable but its amplitude decreases in the semi‐IPNs with increasing amount of PHEMA in the systems. The tan δ maximum of PHEMA is shifted to a lower temperature and its amplitude decreases with increasing amount of PU in the semi‐IPNs. The segregation degree of components α was calculated using the viscoelastic properties of semi‐IPNs. It was concluded that the studied semi‐IPNs are two‐phase systems with incomplete phase separation. The different levels of immiscibility lead to the different degree of phase separation in the semi‐IPNs with compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
The graphite‐filled polyurethane/poly(methyl methacrylate‐butyl methacrylate) (PU/P(MMA‐BMA)) semi‐interpenetrating polymer networks (IPNs) were synthesized by sequential method. The influences of graphite particle content and size on the 60/40 PU/P(MMA‐BMA) IPNs were studied. The damping properties of IPN composites were evaluated by dynamic mechanical thermal analysis (DMA) and cantilever beam resonance methods. The mechanical performances were investigated using tensile and hardness devices. DMA results revealed that the incorporation of graphite particles improved damping properties of IPNs significantly. The 5% graphite‐filled IPN composite exhibited the widest temperature range and the highest loss factor (tan δ) when the test frequency was 1 Hz. As to the damping properties covering a wide frequency range from 1 to 3,000 Hz, the addition of graphite particles broadened the damping frequency range (Δf, where tan δ is above 0.3) and increased the tan δ value of IPNs. Among them, the composite with 7.5% graphite showed the best damping capacity. And the hardness and the tensile strength of IPN composites were also improved significantly. POLYM. COMPOS., 2013 © 2013 Society of Plastics Engineers  相似文献   

5.
Full-interpenetrating polymer networks (IPNs) were prepared from epoxy and castor oil-based polyurethane (PU), by the sequential mode of synthesis and were characterized by different techniques: swelling test, scanning electron microscopy (SEM), thermomechanical analysis (TMA), thermogravimetric analysis (TGA), tensile test, and instrumented impact test. 2,4-Toluene diisocyanate (TDI) was used as a curing agent for castor oil, at a NO/OH ratio = 1.50. Diglycidyl ether of bisphenol A (DGEBA) was cured and crosslinked using 2,4,6-tris(dimethylaminomethyl)phenol (TDMP) at 1.5%, by weight, of epoxy resin. The homogeneous morphology of IPN samples of PU compositions up to 40%, by weight, revealed by SEM may be attributed to some extent to grafting of the PU phase onto the epoxy matrix, which results from the reaction between NCO groups in the PU phase with OH groups in the epoxy matrix. This has some synergistic effect on the thermal resistance and tensile properties of IPNs compared to those of the pure components, such as illustrated by the data from TGA and tensile tests. However, the grafting structure appears not to enhance their impact resistance, which probably requires the formation of rubbery particles of suitable size. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1649–1659, 1998  相似文献   

6.
A range of semi‐interpenetrating polymer networks (semi‐IPNs) based on polyurethane (PU) and poly(vinyl pyrrolidone) (PVP) have been synthesized and characterized with respect to their thermodynamic characteristics, morphology, mechanical properties, surface properties, water sorption and bacterial adhesion. The free energies of mixing of PU and PVP in semi‐IPNs have been determined by the vapor sorption method and were shown to be positive for all compositions. The surface properties of semi‐IPNs were investigated using the dynamic contact angle analysis. It was shown that the advancing contact angle changes from 83.1° to 65.3° with increasing PVP from 7.05% to 57.38%. Scanning electron microscopy demonstrated that the semi‐IPNs are two‐phase systems with incomplete phase separation. The mechanical properties reflect the changes in structure of semi‐IPNs with increasing of amounts of PVP in the system. Incorporation of PVP into the semi‐IPN with PU restricts the ability of PVP to sorb water. As infection is likely to be caused by bacterial adherence to biomedical implants, the bacterial adhesion data suggests that the semi‐IPNs with PVP content below 22.52% may be useful for biomedical material applications. Polym. Eng. Sci. 44:940–947, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
Toughening particles, comprising two radially alternating rubbery and glassy layers, were prepared by using sequential emulsion polymerization. The conditions which led to controlled particle size and morphology are discussed. A relatively new type of inert core shell particle [fly‐ash (FA)] and surface‐activated FA, by two different silane coupling agents, namely 3‐aminopropyltrimethoxy silane (AMP) and vinyltriethoxysilane (VES)‐based multilayered toughening particles, which radially comprise rubbery and glassy layers, were also prepared. The toughening particles were used with general purpose polyester resin (GPR) for making composite sheets. Formation of multiple layers in the core‐shell particles and their morphology were confirmed by transmission electron microscopy (TEM). The mechanical properties such as tensile, flexural, impact, and hardness of the toughened GPR are discussed critically. The tensile fractured surfaces were studied by scanning electron microscopy (SEM). Thermal property such as thermogravimetric analysis (TGA) were also discussed. The composites were exposed to various adverse environmental conditions such as water, boiling water, salt water, acid, alkali, toluene, weather, and freezing–thawing for 30 days. The mechanical properties (viz. the tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus, impact strength and hardness of FA/GPR, FA.AMP core/GPR, and FA.VEScore/GPR) were studied before and after exposure to adverse environmental conditions. The results indicate that the mechanical properties of FA/GPR composite are improved by surface treatment of FA and their resistance to the various environmental stresses is also enhanced substantially on modification by toughening particles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 511–528, 2004  相似文献   

8.
Interpenetrating polymer networks (IPNs) of glycerol modified castor oil polyurethane (GC‐PU) and poly(2‐ethoxyethyl methacrylate) poly(2‐EOEMA) were synthesized using benzoyl peroxide as initiator and ethylene glycol dimethacrylate (EGDM) as crosslinker. GC‐PU/poly (2‐EOEMA) interpenetrating polymer networks were obtained by transfer molding. The novel GC‐PU/poly (2‐EOEMA) IPNs are found to be tough films. These IPNs are characterized in terms of their resistance to chemical reagents thermal behavior (DSC, TGA) and mechanical behavior, including tensile strength, Young's modulus, shore A hardness, and elongation. The morphological behavior was studied by scanning electron microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1029–1034, 2004  相似文献   

9.
Interpenetrating polymer networks (IPNs) based on blocked polyurethane (BPU)/phenolic (PF) were prepared using simultaneous polymerization method. The IPN was prepared from BPU prepolymer with m‐xylylenediamine as the chain extender and PF prepolymer using p‐toluene sulfonic acid as a catalyst. From Fourier transform infrared spectra analysis, it was found that the major reactions in the BPU/PF IPN system are the polymerization of BPU/MXDA and the self‐polymerization of PF. It was confirmed from scanning electron micrography that the BPU/PF IPN compatibility of the networks was improved, and the system was heterogeneous and more than one phase existed in the IPN. The tensile properties, flexural properties, impact, and hardness of the prepared IPN were studied. To obtain the best mechanical properties of IPN materials, the filler added in IPN materials has to be investigated. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

10.
Polyurethane/furfuryl alcohol (PU/FA) interpenetrating polymer networks (IPNs) were synthesized from furfuryl alcohol using p-toluene sulfonic acid as a catalyst and blocked NCO-terminated PU prepolymer with m-xylylenediamine (MXDA) as a chain extender. From IR spectrum analysis it was found that the major reactions in the PU/MXDA/FA system are the polymerization of PU/MXDA and the self-polymerization of FA. The tensile strengths of PU/FA IPNs that contain 5 p.h.r. PU are greater than those of the pure components. The flexural strength, flexural modulus, Shore D hardness and HDT decrease and the notched Izod impact strength increases with the polyurethane content. The compatibility of the compounds in these PU/FA IPNs was investigated by dynamic mechanical analysis and scanning electron microscopy. It was found that glass transition temperatures are shifted inwardly which indicated that the PU/FA IPNs were semicompatible. It was confirmed from scanning electron micrography that the system was heterogeneous.  相似文献   

11.
Two semiinterpenetrating polymer networks (semi‐IPNs) based on trihydroxyl methylpropane–polyurethane (T‐PU) or castor oil–polyurethane (C‐PU) were prepared by curing the mixed solution of the polyurethane prepolymer and nitrochitosan (NCH). During the curing process, crosslinking and grafting reaction between the molecules of the PU prepolymer and NCH occurred, because of the high reactivity of remaining hydroxyl groups in the NCH with ? NCO groups of PU. The structure of the original semi‐IPN sheets and the sheets treated with acetone were studied by infrared, 13C‐NMR, scanning electron microscopy, and dynamic mechanical analysis, showing interpenetration of NCH molecules into the PU networks. When nitrochitosan content (CNCH) was lower than 10 wt %, the semi‐IPN sheets T‐PU and C‐PU had higher density and tensile strength (σb) than the systems with CNCH more than 20%. The trihydroxymethyl propane‐based PU reacted more readily with nitrochitosan to form the semi‐IPNs than castor oil‐based PU. The semi‐IPN coatings T‐PU and C‐PU were used to coat cellophane, resulting in intimate interfacial bonding. The mechanical strength and water resistivity of the cellophane coated with T‐PU coating were improved remarkably. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3109–3117, 2001  相似文献   

12.
Semi‐interpenetrating networks (semi‐IPNs) were prepared from natural rubber (NR) and polystyrene (PS) by the sequential method. In these semi‐IPNs the NR phase was crosslinked while the PS phase was uncrosslinked. Different initiating systems such as dicumyl peroxide (DCP), benzoyl peroxide (BPO), and the azobisisobutyronitrile (AIBN) system were used for polymerizing the PS phase. The blend ratio was varied by controlling the swelling of NR in the styrene monomer. The mechanical properties of the semi‐IPNs, namely, density, tensile strength, tear strength, elongation at break, tension set, tensile set, impact strength, and hardness, were determined. The morphology of different IPNs was studied using scanning electron microscopy. A compact morphology with a homogeneous phase distribution was observed in the semi‐IPNs. The properties of the semi‐IPN do not change much with the initiating system. However, in most cases, the DCP initiating system showed slightly superior performance. The tensile and tear‐strength values of the IPNs were found to increase with increasing plastomer content. The crosslink density of the semi‐IPNs also increased with increase in the polystyrene content. The experimental values were compared with theoretical models such as series, parallel, Halpin Tsai, Coran, Takayanaki, Kerner, and Kunori. The tensile and tear‐fracture surfaces were examined using a scanning electron microscope. The fracture patterns were correlated with the strength and nature of the failure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2327–2344, 2000  相似文献   

13.
A feasibility study of pultrusion of fiber-reinforced polyurethane/furfuryl alcohol (PU/FA) interpenetrating polymer/network IPN composites has been made. From the viscosity study, it was found that the pot life of the PU/FA IPN prepolymers increased with PU content and showed high reactivity at elevated temperature. It was confirmed from the morphological study that the wetting of fibers by the PU/FA IPN resins was improved with PU content. The appearance of the tensile failure surfaces of the pultruded glass fiber-reinforced PU/FA IPN composites showed “hackle patterns” for PU contents below 15 phr. The mechanical property study shows that the tensile strength of pultruded PU/FA IPN composites is the highest when the PU content is 5 phr. However, the flexural strength, flexural modulus and HDT decreased with PU content. The mechanical properties of various fiber-reinforced (glass, carbon, and Kevlar 49 aramid fiber) pultruded PU/FA IPN composites increased with fiber volume content.  相似文献   

14.
A series of semi‐interpenetrating polymer networks (SIPNs) of polyurethane (PU) and polyacrylonitrile (PAN) in the weight ratios 90/10, 70/30, 60/40 and 50/50 PU/PAN were prepared using polyethylene glycol, 4,4′‐diphenylmethane diisocyanate and acrylonitrile by sequential polymerization. Differential scanning calorimetry and scanning electron microscopy techniques were used to find the glass transition temperature and surface morphology of SIPNs. The tough and transparent SIPN films were characterized for physico‐mechanical properties such as density, surface hardness and tensile properties. Positron annihilation lifetime spectroscopy (PALS) was used to measure the free volume behaviour of the IPNs. The sorption behaviour of IPNs with benzene penetrant was also measured. An attempt was made to correlate the PALS results with the mechanical and sorption properties of the SIPNs. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
Semi‐interpenetrating polymer networks (semi‐IPNs), as polymer hydrogels composed of chitosan and poly(hydroxyethyl methacrylate) (PHEMA), exhibiting electrical‐sensitive behavior, were prepared. The swelling behavior of the chitosan/PHEMA hydrogels was studied by immersing the gels in various concentrations of aqueous NaCl solution. The electrical responses of the semi‐IPN hydrogel, in applied electric fields, were also investigated. When the semi‐IPN hydrogels were swollen, where one electrode was placed in contact with the gel and the other fixed 30 mm apart from one, they exhibited bending behavior on the application of an electric field on a contact system. The electroresponsive behavior of the present semi‐IPN was also affected by the electrolyte concentration of the external solution. The semi‐IPN also showed various degrees of increased bending behavior depending on the electric stimulus. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 915–919, 2004  相似文献   

16.
Interpenetrating polymer networks (IPNs) based on a polyurethane (PU) and two unsaturated polyester (UPE) resins (a commercially available UPE and a partially endcapped UPE) were prepared. The mechanical properties, such as tensile strength, elongation at break, impact strength, and dynamic mechnical properties of IPNs, were studied by changing reaction temperature, PU reaction rate, and UPE reaction rate. Owing to the unique microgel formaton of UPE, the first formed network tends t be the dispersed phase in the PU-UPE IPN system. The reaction sequence was found to be an important factor in determining the phase mixing and phase morphology of the IPNs. When the PU reaction was faster, extensive phase mixing due to strong grafting or chain interpenetration was obtained. When the UPE reacted first, grafting was retarded by the microgel formation of the UPE network. It was found that simultaneous reaction of the two reacting system resulted in a co-continuous structure that provided enhanced tensile properties and impact strength.  相似文献   

17.
通过共混法制备了聚氨酯(PU)/环氧树脂(EP)互穿网络聚合物(IPN),采用示差扫描量热法(DSC)和动态机械分析(DMA)对IPN形成过程中的固化反应动力学及产物IPN的相容性进行了研究,结果表明,m(PU)/m(EP)=10∶6的IPN体系的反应级数为0.95,表观活化能为169.23 kJ/mol;PU/EP IPN只有1个玻璃化转变温度,相容性好。  相似文献   

18.
Interpenetrating polymer networks (IPNs) were prepared from polyurethane (PU)‐modified epoxy with different molecular weight of polyol and polyurethanes based on the mixture of polydiol and polytriol by a one‐shot method. Two types of PU‐modified epoxy: PU‐crosslinked epoxy and PU‐dangled epoxy were synthesized, and the effects of the different molecular weights of polyol in the PU‐modified epoxy/PU IPNs on the dynamic mechanical properties, morphology, and damping behavior were investigated. The results show that the damping ability is enhanced through the introduction of PU‐modified epoxy into the PU matrix to form the IPN structure. As the molecular weight of polyol in PU‐modified epoxy increases, the loss area (LA) of the two types of the IPNs increases. PU‐dangled epoxy/PU IPNs exhibit much higher damping property than that of the PU‐crosslinked epoxy/PU IPNs with 20 wt % of PU‐crosslinked epoxy. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 328–335, 1999  相似文献   

19.
The stress relaxation behavior of acrylic–polyurethane (PU)-based graft-interpenetrating polymer networks (IPNs) was characterized via dynamic mechanical analysis (DMA) and modeled using finite element method (FEM) analysis. Stress relaxation of glassy IPN specimens was experimentally studied under flexural testing, while rubbery IPN specimens were tested in tension. The effects of varying the styrene content in the acrylic copolymer phase, compatibility of the two phases in IPNs, and changing the concentration of acrylic copolymer and PU were studied. A higher percentage of styrene content resulted in higher homogeneity of IPN specimens, and decrease in initial modulus for acrylic copolymer specimens. Additionally, glassy IPN specimens with 90% styrene shows resistance to relaxation as high as acrylic copolymer samples. Experimental results were used to develop a numerical model to study stress relaxation response of specimens. While polymer systems have been studied computationally, numerical modeling of IPN systems is still in its infancy. A three-dimensional FEM model was developed using the Generalized Maxwell model and four-term Prony series constants, which were extracted from the stress relaxation experiments. With four terms in the Prony series, a good match was observed between experimental observations and results from the FEM model.  相似文献   

20.
Fly‐ash (FA) was surface treated with silane coupling agents (CA) vinyltriethoxy silane and aminopropyltrimethoxysilane. Fly‐ash/polyester (FA/GPR) and surface treated fly‐ash/polyester (FA/CA/GPR) particulate composites were made. The composites were exposed to various adverse environmental conditions such as water, boiling water, salt water, acid, alkali, toluene, weather and freezing–thawing cycles for 30 days. The mechanical properties, ie tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus, compressive strength, impact strength and hardness of FA/GPR and FA/CA/GPR were studied before and after exposure to adverse environmental conditions. The results indicate that the mechanical properties of FA/GPR composites are improved by surface treatment of FA and that their resistance to the various environmental stresses is also enhanced substantially by surface treatment. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号