首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过在质子交换膜燃料电池加载不同方向、不同强度的均匀磁场,研究均匀磁场对质子交换膜燃料电池工作性能的影响。研究发现,在燃料电池两侧加载不同方向、不同强度的均匀磁场,可以不同程度提升质子交换膜燃料电池的工作性能。文章对比了磁场方向与质子交换膜燃料电池双极板两侧平行及垂直时的工作性能,垂直磁场下的电池输出功率和工作电流提升幅度最大。当质子交换膜燃料电池分别置于不同强度(270,440,530 m T)的均匀磁场时,磁场下的电池输出功率与不加载磁场时有所增大,并且随着外加均匀磁场的增大,电池的输出功率也随之提高。  相似文献   

2.
李姣  郭航  叶芳 《热科学与技术》2023,22(4):341-350
质子交换膜燃料电池在运行过程中反应物从流道传输至催化层时会经过气体扩散层,气体扩散层即 可用来传输反应气体,又用来排出反应物生成的水,所以探究气体扩散层的结构对参加反应的物质及生成物 传输的影响规律有助于了解其分布情况。通过数值模拟比较了穿孔型、树状型和不规则形状气体扩散层在不 同孔隙率下顺流流动时对电池性能的影响情况。计算结果表明,气体扩散层结构严重影响质子交换膜燃料电 池性能,三种不同形状的气体扩散层对应的电性能随孔隙率的变化规律各不相同,到达催化层表面氧气的含 量受扩散层结构影响比氢气大,气体扩散层结构对阴极侧生成物水含量的影响不可忽略。  相似文献   

3.
为了研究扩散层孔隙率对质子交换膜燃料电池(PEMFC)性能的影响,采用COMSOL软件,通过数值模拟得出气体扩散层不同孔隙率(0.2,0.4,0.6和0.8)时,单直通道和具有楔形肋片(长1 mm,高1.5 mm,宽2 mm)的PEMFC性能曲线、阴极氧气质量分数分布和水质量分数分布。结果表明:扩散层孔隙率对燃料电池性能具有较大影响,随着扩散层孔隙率从0.2增大到0.8,PEMFC的电流密度逐渐增加,最大可达847 mA/cm~2;相对于单直通道,增加孔隙率比添加楔形肋片更利于提升电池性能;在孔隙率为0.6和0.8时,氧气更易扩散到反应区,排水效果更好。  相似文献   

4.
该文模拟常规矩形平行流场、正六边形平行流场和正六边形蜂窝状仿生学流场对质子交换膜燃料电池(PEMFC)性能的影响。通过对极化曲线、氧气和水分布、膜电流密度以及压降和寄生功率密度进行分析,结果表明:正六边形流场表现出良好的输出性能,且正六边形蜂窝状流场的电流密度比常规矩形平行流场和正六边形平行流场分别提升11.28%和4.95%。此外,常规矩形平行流场、正六边形平行流场和正六边形蜂窝状流场的氧气不均匀度分别为0.64、0.53和0.41,正六边形蜂窝状流场展现出更好的水和膜电流密度分布能力,进一步说明正六边形流场缓解了氧气、水和膜电流密度分布不均匀的问题。正六边形蜂窝状流场压降虽比常规矩形平行流场和正六边形平行流场分别增加40.0%和27.7%,有较高的寄生功率密度,但仍获得了最大的净输出功率密度。  相似文献   

5.
分析质子交换膜燃料电池(PEMFC)怠速工况衰退机理,确定怠速工况不同衰退机理对燃料电池模型参数的影响,采用所建立的PEMFC二维等温多物理场模型,仿真研究燃料电池在怠速工况衰退前后的性能及各种衰退因素对电压衰减量的贡献和内部反应气体分布变化.研究结果表明,阴极活化损失增大是怠速工况下最重要的衰退因素,其次是开路电压衰...  相似文献   

6.
储旭  郭雪岩 《动力工程学报》2023,(3):359-364+379
为了改善质子交换膜燃料电池(PEMFC)的性能,采用流道内使用挡板堵塞的方法,以增强反应气体向催化层的传质。建立了一个三维、两相、稳态的PEMFC数值模型,研究了凸字排布、顺排和逆排这3种不同阴极流道挡板的排布方式对PEMFC性能的影响,并与无挡板常规流场进行对比,然后在最佳排布方式的基础上研究了挡板形状(矩形、梯形和半圆形)对PEMFC性能的影响。结果表明:PEMFC阴极流道挡板顺排性能最好,相较于无挡板常规流道,净功率提升了14.3%;使用梯形挡板的PEMFC性能最好,相较于无挡板常规流道,净功率提高了16.4%。  相似文献   

7.
基于提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的内部传质,增强其排水特性、气体分布特性,达到改善其工作性能的目的,建立了三维、稳态、恒温的8通道蛇形流道PEMFC模型,深入分析与讨论了有、无挡板对PEMFC内部传质的影响,以及挡板的阻塞比及挡板数量对PEM...  相似文献   

8.
PEMFC系统引射器设计及仿真研究   总被引:1,自引:0,他引:1  
针对燃料电池汽车的运行特点,对氢气循环引射器进行了结构设计,利用Fluent软件对所设计的引射器进行了全工况模拟,确定了对引射器效率影响较大的变量。通过改变工作流体流量,并经过多次模拟后发现,为了使氢气引射器在怠速工况下不失效,引射器前端工作流体压力p_p要≥1.05 MPa。分析了工作流体质量流量G_p、喷嘴喉部直径d_(p*)和工作流体压力p_p对引射性能的影响,发现G_p对引射器的引射性能影响最大,并给出了G_p的取值范围。研究建议引射器设计时G_p在0.21~0.23 g·s~(-1)范围内最佳。  相似文献   

9.
设计了一种圆柱型PEM燃料电池,研究了该燃料电池在外加磁场环境下的工作性能。实验结果表明,由磁力机产生的均匀磁场和永磁铁产生的梯度磁场均能提升圆柱型PEM燃料电池的工作性能,梯度磁场对燃料电池的输出功率密度提升更大;燃料电池的阴极、阳极位置也影响其工作性能,当以内部集流板作为阳极、外部集流板作为阴极运行时,燃料电池输出功率密度更大,而且外加磁场对燃料电池的功率提升比也更大。  相似文献   

10.
质子交换膜燃料电池(PEMFC)是一种高效的能量利用装置。为了提高其工作性能,在其中加装涡流发生器,并研究工况对其性能的影响,对其进行了单因素和多因素影响分析,利用响应面法建立数学关系式。结果表明:加装涡流发生器,可以明显改善PEMFC温度均匀性、提高燃料利用率、改善通道排水,对燃料电池的性能有明显提升,电压为0.4 V时电流密度提升了55.4%;在所选区间内温度为65℃,相对压力为100 kPa,湿度为60%,化学计量比为2.50时,燃料电池的功率密度最大。  相似文献   

11.
A fundamental understanding of the water balance of a fuel cell during operation is crucial for improving the cell performance and durability. The humidification in the anode or cathode has an important effect on the flow characteristics and cell efficiency. Three-dimensional steady mathematical model based on the electrochemical, current distribution, fluid motion continuity equation, momentum and energy equation, boundary layer theory has been developed to simulate PEMFC with interdigitated flow field using the computational fluid dynamics (CFD). Effects on the current density and temperature differences have been simulated and analyzed respectively, when the humidification in the anode or cathode is from 0% to 100% respectively. The numerical results show that the humidification strongly influences the current density and temperature difference so as to affect the cell efficiency. Under the same operation conditions and low humidification conditions, anode humidification can better enhance the performance of the battery and improve the extent of PEM humidification.  相似文献   

12.
蛇形流场结构质子交换膜燃料电池的性能研究   总被引:1,自引:0,他引:1  
建立包括催化层、扩散层、质子膜在内的三维质子交换膜燃料电池模型,通过Fluent软件模拟4种不同结构的蛇形流场,通过对速度、膜中水含量以及功率密度等分析得出蛇形流场的最优结构,并对最优结构进行参数优化。研究表明,4种不同蛇形流场结构中,Multi-serpentine II为最优,随着温度、压强的增加,这种流场结构的燃料电池呈现出良好的性能,从而为质子交换膜燃料电池双极板的设计提供依据。  相似文献   

13.
A three‐dimensional and two‐phase numerical model is developed for a 25‐cm2 proton exchange membrane fuel cell (PEMFC) to investigate the effects of flow mode (coflow and counterflow) and relative humidity (anode 0%/100%; cathode 60%/100%) on the cell performance. Experimental studies are performed to validate this developed model. An equivalent membrane conductivity is proposed to describe the match level between current flux and membrane conductivity. It is found that the cell performance is enhanced under low relative humidity conditions because of the optimized equivalent membrane conductivity. More specifically, the voltage is improved from 0.611 to 0.637 V, and the equivalent membrane conductivity is enhanced from 10.35 to 11.11 S m?1 by replacing the coflow mode with counterflow mode at 1000 mA cm?2 when anode gas is dry and cathode gas is 100% hydrated. Both the anode and cathode relative humidities show an obvious influence on the PEMFC performance, and a suitable inlet humidity could ensure adequate hydration of membrane and avoid water flooding in gas diffusion layers simultaneously.  相似文献   

14.
The geometry configuration of proton exchange membrane fuel cell (PEMFC) which is considered as a promising energy conversion device has great influence on PEMFC performance. In this paper, effect of channel-to-rib width ratio and relative humidity of reactant gas on the performance are compared based on two single PEMFCs. The EIS testing results below 50 A are given and analyzed. The results obtained from polarization curves, power density curves and EIS fitting results prove that: 1. Compared with cell 3:4, the anode high humidification has a greater addition to the performance of cell 1:1; 2. PEMFCs with different geometry configurations of flow field have their own suitable working condition ranges; 3. The charge transfer resistance is the dominating factor when current loading is below 2.0 A cm?2.  相似文献   

15.
A three-dimensional, two-phase, steady-state numerical model of PEMFC with serpentine flow field was set up. The rectangular or triangular blocks were arranged in the cathode channel to improve cell performance. The results showed that the arranged blocks in the channel can effectively enhance the mass transfer of the reactant, thus improve cell performance. The triangular block has better cell performance in comparison with the rectangular block. The block arranged in the rear of the turn has the best cell performance. The reason for the better cell performance of the arranged block is the combination of the under-rib flow and the secondary flow generated by the block. The secondary flow generated by the block is the main reason for the region near the block. Meanwhile, the under-rib flow is the main reason for the region far away from the block.  相似文献   

16.
In this study, we present a rigorous mathematical model, to treat prediction and analysis of proton exchange membrane fuel cells gas concentration and current density distribution in mass transfer area and chemical reaction area performed in 3‐D geometry. The model is based on the solution of the conservation equations of mass, momentum, species, and electric current in a fully integrated finite‐volume solver using the CFDRC commercial code. The influences of fuel cell performance with two kinds of flow channel pattern design are studied. The gas concentration of the straight flow pattern appears excessively non‐uniform, resulting in a local concentration polarization. On the other hand, the gas concentration is well distributed for the serpentine flow pattern, creating a better mass transfer phenomena. The performance curves (polarization curves) are also well correlated with experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The effect of micro-porous layer (MPL) with hydrophobic gradient design on fuel cell performance and stability is investigated under various relative humidity (RH) conditions. Experimental results show that when such MPL is used between catalyst layer and gas diffusion layer, the membrane may retain more water and stay well humidified, and cell performance is increased at low RH conditions. On the other hand, at high RH conditions, the gradient MPL is able to efficiently remove water from the electrode, achieving maximum performance under these conditions. It is found that the design of hydrophobic gradient must take into consideration factors including gas permeability, electronic resistance and hydrophobic characteristics, because excessive hydrophobicity gradient in the MPL may result into high mass transfer resistance, which causes performance degradation.  相似文献   

18.
A good flow field design is important to the proton exchange membrane fuel cell (PEMFC) performance, especially under a high current density region, which is dominated by concentration polarization. Motivated by the variable cross-section channel idea, in this study, a novel flow field containing a converging-diverging (C-D) pattern is proposed. A three-dimensional multiphase model is established to study its performance. The numerical results show that it outperforms the conventional straight channel and only depth-variant channel. In the novel flow field the enhanced under land cross flow and higher effective mass transfer coefficient both improve the reactant transport. The effects of operating conditions, like stoichiometric ratio and operating pressure, on cell output performance are studied. It is found that a higher promotion rate can be obtained by increasing the stoichiometric ratio, but increasing the operating pressure has little effect. The droplet dynamic behavior in the C-D channel and straight channel are studied, and the results prove the better drainage capability of the novel flow field.  相似文献   

19.
A numerical study about in-plane porosity and contact angle gradient effects of cathode gas diffusion layer (GDL) on polymer electrolyte membrane fuel cell (PEMFC) under low humidity condition below 50% relative humidity is performed in this work. Firstly, a numerical model for a fuel cell is developed, which considers mass transfer, electrochemical reaction, and water saturation in cathode GDL. For water saturation in cathode GDL, porosity and contact angle of GDL are also considered in developing the model. Secondly, current density distribution in PEMFC with uniform cathode GDL is scrutinized to design the gradient cathode GDL. Finally, current density distributions in PEMFC with gradient cathode GDL and uniform cathode GDL are compared. At the gas inlet side, the current density is higher in GDL with a gradient than GDL with high porosity and large contact angle. At the outlet side, the current density is higher in GDL with a gradient than GDL with low porosity and small contact angle. As a result, gradient cathode GDL increases the maximum power by 9% than GDL with low porosity and small contact angle. Moreover, gradient cathode GDL uniformizes the current density distribution by 4% than GDL with high porosity and large contact angle.  相似文献   

20.
Effects of gas diffusion and electric conduction on the performance of a polymer electrolyte membrane fuel cell (PEMFC) were studied in an effort to optimize the channel configurations of flow field plates. The rib and channel widths of flow field plates were varied from 0.5 to 3 mm. The narrower the rib width, the performance of a cell becomes improved in the range investigated. From the results, gas diffusion seems to be a more important factor than electric conduction for the better cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号