首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Distributions of carbon black in 30/70% (w/w) natural rubber (NR)/acrylic rubber (ACM) blends were investigated as a function of the carbon black content and type using a dynamic mechanical thermal analysis (DMTA) technique. Two different types of carbon black (N220 and N330) were used, and 10–50 phr carbon black was compounded to the rubber blends. From the DMTA thermograms of various blends, the weight fractions of carbon black in the NR and ACM phases were calculated. Carbon black was unevenly distributed in the rubber blend. It preferred to migrate into the NR phase, regardless of the amount of carbon black that was used. By increasing the carbon black content, the weight fraction of carbon black in the NR phase decreased whereas that in the ACM phase increased. A change in the type of carbon black from N220 to N330 significantly decreased the weight fraction of carbon black in the NR phase, but it was not sufficiently strong to affect the tensile properties and hardness of the rubber blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:248–256, 2006  相似文献   

2.
陈珂  王蕊 《弹性体》2013,23(3):9-12
利用环氧化天然胶乳作为界面改性剂,采用胶乳共混法将聚乙烯醇(PVA)溶液同天然胶乳进行混溶,制备了PVA/天然橡胶(NR)的共混物,通过电子万能材料试验机、动态热机械分析仪、热老化箱和臭氧老化箱,研究了共混物力学性能、玻璃化转变温度、老化性能以及耐溶剂抽出性。结果表明,PVA的加入明显提高了NR的撕裂强度和硬度,而共混物的拉伸强度和断裂伸长率随着PVA含量的增加都出现下降的趋势;随着PVA含量的增加,NR的玻璃化转变温度呈现先增加后降低的趋势;随着PVA含量增加,共混物各试样对乙醇的耐抽出能力相差不大,对水的耐抽出能力逐步变弱。热空气老化对材料的力学性能影响明显,而臭氧老化由于时间较短,对材料的力学性能影响不明显。老化实验对材料的性能变化率影响显著。  相似文献   

3.
采用硫载体硫化剂4,4′-二硫化二吗啉(DTDM)对三元乙丙橡胶(EPDM)进行活性预处理,研究了活性预处理EPDM/天然橡胶(NR)并用胶的性能,并探讨了活性预处理EPDM对并用胶力学性能影响的机理。结果表明,预处理EPDM/NR并用胶的共硫化程度得到改善,并用硫化胶的力学性能提高;并用硫化胶的耐老化性能优于NR硫化胶,但比未处理EPDM/NR并用硫化胶差;并用胶只存在1个玻璃化温度的转变区,两相的相容性得到改善;在高温动态条件下,EPDM与DTDM发生活性反应,但未生成大量凝胶。  相似文献   

4.
We studied the stress‐relaxation behavior of natural rubber (NR)/polystyrene (PS) blends in tension. The effects of strain level, composition, compatibilizer loading, and aging on the stress‐relaxation behavior were investigated in detail. The dispersed/matrix phase morphology always showed a two‐stage mechanism. On the other hand, the cocontinuos morphology showed a single‐stage mechanism. The addition of a compatibilizer (NR‐g‐PS) into 50/50 blends changed the blend morphology to a matrix/dispersed phase structure. As a result, a two‐step relaxation mechanism was found in the compatibilized blends. A three‐stage mechanism was observed at very high loadings of the compatibilizer (above the critical micelle concentration), where the compatibilizer formed micelles in the continuous phase. The aged samples showed a two‐stage relaxation mechanism. The rate of relaxation increased with strain levels. The aging produced interesting effects on the relaxation pattern. The rate of relaxation increased with temperature due to the degradation of the samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Natural rubber (NR) blends are widely used in many industries because of their excellent integrated properties. However, a simple, easily operational, nondestructive, and accurate method for their quantitative analysis remains as a challenge. This has been always an important issue in the related industries, particularly for their daily quality control tests. One main reason is that NR ingredients vary according to their geographical origin and the harvest time, which renders it hard to set up a versatile analytical protocol for all NRs. Another reason is owing to the defects of the established methods themselves as having been revealed in those relying on TGA, Py‐GC/MS, FTIR, and ATR‐FTIR. In this study, a simple and feasible method based on near infrared spectroscopy combined with chemometric is proposed to solve this problem for the first time. NR/SBR (styrene‐butadiene rubber) rubber blend, the most widely used NR blend, is selected as a typical research subject. Spectral calibration region, factor, and several different pretreatment methods are applied on the spectra data to optimize calibration models. The result shows the optimized calibration model provides a good accuracy (0.135 wt %), intraday precision (0.121 wt %) and interday precision (0.132 wt %) for 3 months. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41423.  相似文献   

6.
The immiscible polypropylene (PP)/natural rubber (NR) blends of various concentrations were prepared by using a twin-screw extruder. The prepared blends were passed through the reactor where they were ultrasonically treated by an extrusion process. Mechanical properties and rheology of the obtained blends were studied, along with morphology by using the scanning electron microscopy and the atomic force microscopy (AFM). Mechanical properties of the treated blends were found to improve significantly in comparison with those of untreated blends. Under most treatment conditions, no significant differences in the viscosity of the treated and untreated blends were observed. The AFM studies revealed the development of interfacial layers, interfacial roughening and improved interfacial adhesion between PP and NR phases in the blends subjected to ultrasonic treatment. At the same time weak adhesion and delamination at the interface were found in the untreated blends. The improved interfacial adhesion, morphology and mechanical properties are believed to be due to the formation of in situ copolymer at the interface of two immiscible polymers caused by an ultrasonic treatment without the use of any chemicals.  相似文献   

7.
The aim of this research was to investigate the behaviors of epoxy resin blended with epoxidized natural rubber (ENR). ENRs were prepared via in situ epoxidation method so that the obtained ENRs contained epoxide groups 25, 40, 50, 60, 70, and 80 mol %. The amounts of ENRs in the blends were 2, 5, 7, and 10 parts per hundred of epoxy resin (phr). From the results, it was found that the impact strength of epoxy resin can be improved by blending with ENRs. Tensile strength and Young's modulus were found to be decreased with an increasing amount of epoxide groups in ENR and also with an increasing amount of ENR in the blends. Meanwhile, percent elongation at break slightly increased when ENR content was not over 5 phr. In addition, flexural strength and flexural modulus of the blends were mostly lower than the epoxy resin. Scanning electron microscope micrograph of fracture surface suggested that the toughening of epoxy resin was induced by the presence of ENR globular nodules attached to the epoxy matrix. TGA and DSC analysis revealed that thermal decomposition temperature and glass transition temperature of the samples were slightly different. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 452–459, 2006  相似文献   

8.
This study presents a new approach to toughen Polyamide 6 (PA6) by using a low‐molecular weight liquid natural rubber (LNR). The LNR is prepared by mastication of pale latex crepe in the presence of 0.5 phr Peptizol 7. The PA6/LNR blend samples are characterized in terms melt flow index, hardness, abrasion resistance, impact strength, flexural strength, tensile strength, and thermal properties. The impact strength of PA6 increases by about 67% upon addition of 10% LNR. The percolation model is applied to study of brittle to ductile transition. The percolation threshold for the brittle to ductile transition of the blend was found to be 14.5 wt % LNR, corresponding to the critical volume fraction of the stress volume, Vsc = 0.58, which is consistent with the calculated value of ≈ π/6. The PA6/LNR blends exhibit cavitation and matrix shear yielding, which would be the main contribution to the increases impact strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39750.  相似文献   

9.
研究了芳纶短纤维填充工艺和填充量及硫化体系对天然橡胶/溶聚丁苯橡胶共混物动态力学性能与压缩疲劳生热的影响。结果表明,用2~3份(质量,下同)芳纶短纤维替代10份炭黑填充共混物,不仅保持了共混物的邵尔A硬度、弹性模量及撕裂强度等,而且改善了其滞后损失与压缩疲劳生热性能;增加单硫键含量与适当提高交联密度可进一步降低共混物的滞后损失与动态生热,但撕裂强度有所下降。  相似文献   

10.
制备了酚醛树脂硫化的丁基橡胶(IIR)/丙烯酸酯橡胶(ACM)共混物,并研究其与钢片的粘接性能。对剥离强度、断面形貌及表面能等的研究结果表明,引入ACM有效地改善了IIR与钢片的粘接性能,使其剥离强度提高2~3倍;并用ACM后,体系剥离强度的提高是物理黏着和化学黏着共同作用的结果;钢片-橡胶复合制件的破坏形式主要是橡胶部分的破坏及橡胶与胶黏剂之间的破坏。当IIR与ACM质量比为70/30时,试样剥离破坏形式表现为100%的橡胶本体破坏。增大界面作用力、适当降低共混硫化胶本体强度有利于提高体系的粘接性能。  相似文献   

11.
The cure characteristics and mechanical properties of blends consisting of hydrogenated natural rubber (HNR) and natural rubber (NR) blends were investigated. The HNR/NR blends at 50/50 wt ratio were vulcanized using various cure systems: peroxide vulcanization, conventional vulcanization with peroxide, and efficient vulcanization with peroxide. The HNR/NR vulcanizates cured by the combination of peroxide and sulfur donor (tetramethylthiuram disulfide, TMTD) in the efficient vulcanization with peroxide exhibited the best mechanical properties. It was also found that the hydrogenation level of HNR did not affect the tensile strength of the vulcanizates. The tensile strength of the blends decreased with increasing HNR content because of the higher incompatibility to cause the noncoherency behavior between NR and HNR. However, the HNR/NR vulcanizate at 50/50 wt ratio showed the maximum ultimate elongation corresponding to a co‐continuous morphology as attested to by scanning electron micrographs. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
氯醚橡胶/丁腈橡胶共混物的结构与性能   总被引:5,自引:2,他引:5  
研究了不同并用比的氯醚橡胶(ECO)/丁腈橡胶(NBR)共混物的相态结构,力学性能,耐老化性能和耐油性能,透射电镜照片显示:ECO/NBR为70/30(质量份,下同)时共混物呈双连续相:为60/40和40/60时ECO都为分散相,且两相界面清晰。加入NBR降低了ECO的拉伸强度和看断伸长率,以及耐热空气老化性能,随着NBR用量的提高,共混物硫化胶在油中的体积变化率增加,ECO/NBR为70/30时硫化胶在100℃热油中的性能保持率最高,而且体积变化率与ECO的相当。  相似文献   

13.
Natural rubber (NR) was blended with chlorosulfonated polyethylene (CSM) with various formulation and blend ratios (NR/CSM: 80/20 –20/80, wt/wt). Rubber blends were prepared by using a two‐roll mill and vulcanized in a compression mold to obtain the 2 mm‐thick sheets. Tensile properties, tear resistance, thermal aging resistance, ozone resistance, and oil resistance were determined according to ASTM. Compatible NR/CSM blends are derived from certain blends containing 20–30% CSM without adding any compatibilizing agent. Tensile and tear strength of NR‐rich blends for certain formulations show positive deviation from the rule of mixture. Thermal aging resistance depends on formulation and blend ratio, while ozone and oil resistance of the blends increase with CSM content. Homogenizing agents used were Stuktol®60NS and Epoxyprene®25. Stuktol®60NS tends to decrease the mechanical properties of the blends and shows no significant effect on blend morphology. Addition of 5–10 phr of epoxidized natural rubber (ENR, Epoxyprene® 25) increases tensile strength, thermal aging resistance, and ozone resistance of the blends. It is found that ENR acts as a compatibilizer of the NR/CSM blends by decreasing both CSM particle size diameter and α transition temperature of CSM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 127–140, 2006  相似文献   

14.
In this study, the influence of the processing conditions and the addition of trans-polyoctenylene rubber (TOR) on Mooney viscosity, tensile properties, hardness, tearing resistance, and resilience of natural rubber/styrene–butadiene rubber blends was investigated. The results obtained are explained in light of dynamic mechanical and morphological analyses. Increasing processing time produced a finer blend morphology, which resulted in an improvement in the mechanical properties. The addition of TOR involved an increase in hardness, a decrease in tear resistance, and no effect on the resilience. It resulted in a large decrease in the Mooney viscosity and a slight decrease in the tensile properties if the components of the compounds were not properly mixed. The results indicate that TOR acted more as a plasticizer than a compatibilizer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Percolation model for brittle-tough transition in nylon/rubber blends   总被引:13,自引:0,他引:13  
Alla Margolina  Souheng Wu   《Polymer》1988,29(12):2170-2173
It is proposed that the brittle- tough transition in nylon/rubber blends occurs when the yielding process propagates through thin matrix ligaments in which a plane-strain to plane-stress transition takes place. This propagation process is modelled as a percolation phenomenon. The model explains the observed brittle-tough transition, and predicts that monodisperse and asymmetric particles are more effective in toughening than polydisperse and spherical ones.  相似文献   

16.
A solid-state chemical reaction occurs when a solvent cast film of a blend of masticated natural rubber and chlorinated natural rubber is heated in the presence of air at 150°C. The thermal behavior of solvent cast films of chlorinated natural rubber, masticated natural rubber, and a 1 : 1 w/w blend (2% w/v in xylene) of these two polymers has been studied using differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy, and nuclear magnetic spectroscopy. The results suggest that carbonyl groups are incorporated into the blend on heating and that the vinyl functionality of the isoprene units is modified during this apparent oxidation. Heating for 2 h at 150°C results in a material that no longer contains the rubber-like cis-1,4-polyisoprene units. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1379–1384, 1997  相似文献   

17.
The use of trans‐polyoctylene rubber (TOR) as a compatibilizer for blends of natural rubber (NR) and acrylonitrile‐butadiene rubber (NBR) was investigated using atomic force microscopy (AFM) and dynamic mechanical analysis (DMA). The NR/NBR blends containing varying proportions of TOR were prepared in an internal mixer. AFM micrographs of NR/NBR blend at 50/50 (w/w) composition showed heterogeneous phase morphology with NR as a matrix and NBR as a dispersed phase. Inclusion of TOR in the NR/NBR blend altered the phase morphology by reducing the size of the NBR phase. DMA of NR/NBR/TOR showed reduction in tan δ peak height of NBR and an increase in storage modulus E′ in the rubbery region for the NR/NBR blends. A comparison of the E′ obtained from experimental data with that from theoretical models was made to deduce the location of TOR in the blend. Based on the fittings of calculated and experimental values of E′, it was inferred that TOR was incorporated into the NR phase at lower proportion as well as at the interfacial region at higher proportion. The Cole–Cole plot illustrated the compatibilizing effect of TOR. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
Vapor transport offers one the unique ability to study structure–property relationships in polymers. An analysis of the transport of chlorinated hydrocarbons through nylon/ethylene–propylene rubber (EPR) blend membranes showed us how the permeation behavior varied according to the structure and morphology of the material under study. Binary blends were subjected to solvent transport studies. The solvent uptake increased with EPR content and decreased with nylon content. The behavior varied with the blend morphology. The effects of blend ratio, compatibilization, and dynamic vulcanization on the vapor permeation behavior of nylon/EPR blends were investigated in detail. The results from the vapor permeation studies were complimentary to those of the morphology studies. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3756–3764, 2004  相似文献   

19.
New paraphenylene diamine antioxidants were prepared. The efficiency and permanence of these oligomer‐bound paraphenylene diamines were compared with those of conventional amine‐type antioxidants in elastomer blends such as natural rubber/styrene–butadiene rubber and natural rubber/polybutadiene rubber. These oligomer‐bound antioxidants showed improved aging resistance and ozone resistance in comparison with the blends containing conventional antioxidants. The liquid oligomer‐bound paraphenylene diamine could replace the plasticizer required for compounding. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 437–443, 2004  相似文献   

20.
Poly(isoprene–butyl acrylate) block copolymers with a variety of molecular weights and compositions were prepared via a controlled free‐radical polymerization with an iniferter. Subsequently, the block copolymers were used as compatibilizers in natural/acrylic rubber blends. Scanning electron micrographs revealed a cocontinuous morphology in the case of the normal blends with a low natural rubber content (20 wt %), whereas the blends that contained more natural rubber showed a dispersed‐particle morphology. When the rubbers were blended with 5 wt % block copolymer, the particle size decreased, and the tensile strength of the resulted blends increased, regardless of the block copolymer characteristics. For the blend that exhibited a cocontinuous morphology, the most effective compatibilizer was the block copolymer with an average molecular weight of 22,000 g/mol, containing mainly (87%) polyisoprene block. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 921–927, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号