首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Poly(n‐butyl methacrylate)‐b‐polystyrene‐b‐poly(n‐butyl methacrylate) (PBMA‐b‐PSt‐b‐PBMA) triblock copolymers were successfully synthesized by emulsion atom transfer radical polymerization (ATRP). Difunctional polystyrene (PSt) macroinitiators that contained alkyl chloride end‐groups were prepared by ATRP of styrene (St) with CCl4 as initiator and were used to initiate the ATRP of butyl methacrylate (BMA). The latter procedure was carried out at 85°C with CuCl/4,4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as catalyst and polyoxyethylene (23) lauryl ether (Brij35) as surfactant. Using this technique, triblock copolymers consisting of a PSt center block and PBMA terminal blocks were synthesized. The polymerization was nearly controlled, ATRP of St from those macroinitiators showed linear increases in the number average molecular weight (Mn) with conversion. The block copolymers were characterized with infrared (IR) spectroscopy, hydrogen‐1 nuclear magnetic resonance (1HNMR), and differential scanning calorimetry (DSC). The effects of the molecular weight of macroinitiators, concentration of macroinitiator, catalyst, emulsion, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP were also reported. POLYM. ENG. SCI., 45:1508–1514, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
Polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (Pst‐b‐PDMS‐b‐PSt) triblock copolymers were synthesized by atom transfer radical polymerization (ATRP). Commercially available difunctional PDMS containing vinylsilyl terminal species was reacted with hydrogen bromide, resulting in the PDMS macroinitiators for the ATRP of styrene (St). The latter procedure was carried out at 130°C in a phenyl ether solution with CuCl and 4, 4′‐di (5‐nonyl)‐2,2′‐bipyridine (dNbpy) as the catalyzing system. By using this technique, triblock copolymers consisting of a PDMS center block and polystyrene terminal blocks were synthesized. The polymerization was controllable; ATRP of St from those macroinitiators showed linear increases in Mn with conversion. The block copolymers were characterized with IR and 1H‐NMR. The effects of molecular weight of macroinitiators, macroinitiator concentration, catalyst concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3764–3770, 2004  相似文献   

3.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

4.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The synthesis of triblock copolymer poly(octadecyl acrylate‐b‐styrene‐b‐octadecyl acrylate), using atom transfer radical polymerization (ATRP), is reported. The copolymers were prepared in two steps. First, polystyrene was synthesized by ATRP using α,α′‐dichloro‐p‐xylene/CuBr/bpy as the initiating system; Second, polystyrene was further used as macroinitiator for the ATRP of octadecyl acrylate to prepare ABA triblock copolymers in the presence of FeCl2·4H2O/PPh3 in toluene. Polymers with controlled molecular weight (Mn = 17,000–23,400) and low polydispersity index value (1.33–1.44) were obtained. The relationship between molecular weight versus conversion showed a straight line. The effect of reaction temperature on polymerization was also investigated, showing a faster polymerization rate under higher temperature. The copolymers were characterized by FTIR, 1H‐NMR, DSC, and GPC and the crystallization behavior of the copolymers was also studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1539–1545, 2004  相似文献   

6.
A series of polystyrene‐b‐poly(dimethylsiloxane)‐b‐polystyrene (PS/PDMS/PS) triblock copolymers had been synthesized by atom transfer radical polymerization (ATRP). The products had been characterized by Fourier transform infrared, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, contact angle, and scanning electron microscope. The results indicate that the PS chains have been successfully blocked onto the PDMS back bone, and the PS‐b‐PDMS‐b‐PS triblock copolymers have low‐surface tension, good thermal stability, and microphase separation configuration. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Poly(n‐butyl methacrylate)‐block‐polydimethylsiloxane‐block‐poly(n‐butyl methacrylate) (PBMA‐block‐PDMS‐block‐PBMA) ABA triblock copolymers were synthesized successfully via atom‐transfer radical polymerization using PDMS as macroinitiator. The effects of PDMS content and substrate nature on self‐assembly behaviors of PBMA‐block‐PDMS‐block‐PBMAs were systematically studied using atomic force microscopy. Two series of triblock copolymers with different molecular weights and compositions, i.e. PBMA‐block‐PDMSA12‐block‐PBMAs and PBMA‐block‐PDMSA21‐block‐PBMAs, were used, where the latter were of a higher PDMS content than the former. On silicon wafer, it was found that only spherical structures formed after annealing films spin‐coated from chloroform solutions of PBMA‐block‐PDMSA12‐block‐PBMAs. In contrast, films of PBMA‐block‐PDMSA21‐block‐PBMAs formed semi‐continuous structures. On mica wafer, it was found that ordered cylindrical pores formed after annealing films spin‐coated from chloroform solutions of PBMA‐block‐PDMSA12‐block‐PBMAs. In contrast, films of PBMA‐block‐PDMSA21‐block‐PBMAs formed isolated cylinders or worm‐like morphologies. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Novel amphiphilic ABA‐type poly(D ‐gluconamidoethyl methacrylate)‐b‐polyurethane‐b‐poly(D ‐gluconamidoethyl methacrylate) (PGAMA‐b‐PU‐b‐PGAMA) tri‐block copolymers were successfully synthesized via the combination of the step‐growth and copper‐catalyzed atom transfer radical polymerization (ATRP). Dihydroxy polyurethane (HO‐PU‐OH) was synthesized by the step‐growth polymerization of hexamethylene diisocyanate with poly(tetramethylene glycol). PGAMA‐b‐PU‐b‐PGAMA block copolymers were synthesized via copper‐catalyzed ATRP of GAMA in N, N‐dimethyl formamide at 20°C in the presence of 2, 2′‐bipyridyl using Br‐PU‐Br as macroinitiator and characterized by 1H‐NMR spectroscopy and GPC. The resulting block copolymer forms spherical micelles in water as observed in TEM study, and also supported by 1H NMR spectroscopy and light scattering. Miceller size increases with increase in hydrophilic PGAMA chain length as revealed by DLS study. The critical micellar concentration values of the resulting block copolymers increased with the increase of the chain length of the PGAMA block. Thermal properties of these block copolymers were studied by thermo‐gravimetric analysis, and differential scanning calorimetric study. Spherical Ag‐nanoparticles were successfully synthesized using these block copolymers as stabilizer. The dimension of Ag nanoparticle was tailored by altering the chain length of the hydrophilic block of the copolymer. A mechanism has been proposed for the formation of stable and regulated Ag nanoparticle using various chain length of hydrophilic PGAMA block of the tri‐block copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Well‐defined polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐PS triblock copolymers were synthesized by atom‐transfer radical polymerization (ATRP), using C—X‐end‐group PEO as macroinitiators. The triblock copolymers were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The experimental results showed that the polymerization was controlled/living. It was found that when the number‐average molecular weight of the macroinititors increased from 2000 to 10,000, the molecular weight distribution of the triblock copolymers decreased roughly from 1.49 to 1.07 and the rate of polymerization became much slower. The possible polymerization mechanism is discussed. According to the Cu content measured with atomic absorption spectrometry, the removal of catalysts, with CHCl3 as the solvent and kaolin as the in situ absorption agent, was effective. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2882–2888, 2000  相似文献   

10.
Microphase separation behavior on the surfaces of poly(dimethylsiloxane)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PHFBMA) diblock copolymer coatings was investigated. The PDMS‐b‐PHFBMA diblock copolymers were successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the copolymers was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Surface composition was studied by X‐ray photoelectron spectroscopy. Copolymer microstructure was investigated by atomic force microscopy. The microstructure observations show that well‐organized phase‐separated surfaces consist of hydrophobic domain from PDMS segments and more hydrophobic domain from PHFBMA segments in the copolymers. The increase in the PHFBMA content can strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. And the increase in the annealing temperature can also strengthen the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers. Moreover, Flory‐Huggins thermodynamic theory was preliminarily used to explain the microphase separation behavior in the PDMS‐b‐PHFBMA diblock copolymers.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Atom transfer radical polymerization (ATRP) was applied to synthesize a new kind of star polymers of hyperbranched polyglycerol (HPG) core with multiarms of PS‐b‐PtBA and PS‐b‐PAA by using the “core first” technique. The HPG core was obtained by anionic polymerization of glycerol first, and then the pendant hydroxyl groups of HPG were esterified with 2‐bromoisobutyryl bromide to yield the HPG‐g‐Br, which was used as macroinitiator for ATRP of the first monomer (St) and then second monomer (tBA). After hydrolysis of the PtBA block, poly(acrylic acid) (PAA) side chains were formed. The final products and intermediates were characterized by GPC, NMR, and FTIR in detail. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
A new PDMS macroinitiator is proposed for the anionic ring‐opening polymerization of lactams. This α,ω‐dicarbamoyloxy caprolactam PDMS macroinitiator was readily obtained in quantitative yield, by an original synthesis scheme in two steps, which involved the scarcely reported reaction of isocyanates with silanol groups. It was then shown that this bifunctional macroinitiator enabled to synthesize triblock copolymers PA12‐b‐PDMS‐b‐PA12 by polymerization of lauryl lactam (LL) at high temperature (200°C) in inert atmosphere under conditions compatible with reactive extrusion processes. Another related high molar weight α,ω‐diacyllactam PDMS macroinitiator was also successfully used in the polymerization of LL under the same conditions, therefore overcoming the limitations formerly reported for this type of macroinitiators during the polymerization ε‐caprolactam (ε‐CL) at a much lower temperature (80°C). Triblock copolymers with a wide range of PA12 /molar weights (Mn: ~ 10,800–250,000 Da) were eventually obtained by using both types of macroinitiators. DMTA and DSC analyses showed that their thermal properties were strongly dependent upon their respective contents in soft and hard blocks. Such triblock copolymers already appear very promising for the highly effective in situ compatibilization of PA12/PDMS blends as shown by recent complementary results obtained in our laboratory. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2818–2831, 2006  相似文献   

13.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

14.
Polydimethylsiloxane‐block‐polystyrene‐block‐polydimethylsiloxane (PDMS‐b‐PS‐b‐PDMS) was synthesized by the radical polymerization of styrene using a polydimethylsiloxane‐based macroazoinitiator (PDMS MAI) in supercritical CO2. PDMS MAI was synthesized by reacting hydroxy‐terminated PDMS and 4,4′‐azobis(4‐cyanopentanoyl chloride) (ACPC) having a thermodegradable azo‐linkage at room temperature. The polymerization of styrene initiated by PDMS MAI was investigated in a batch system using supercritical CO2 as the reaction medium. PDMS MAI was found to behave as a polyazoinitiator for radical block copolymerization of styrene, but not as a surfactant. The response surface methodology was used to design the experiments. The parameters used were pressure, temperature, PDMS MAI concentration and reaction time. These parameters were investigated at three levels (?1, 0 and 1). The dependent variable was taken as the polymerization yield of styrene. PDMS MAI and PDMS‐b‐PS‐b‐PDMS copolymers obtained were characterized by proton nuclear magnetic resonance and infrared spectroscopy. The number‐ and weight‐average molecular weights of block copolymers were determined by gel permeation chromatography. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Diblock copolymers, poly[(10‐hydroxydecanoic acid)‐block‐styrene] (PHDA‐b‐PSt), were synthesized by combining enzymatic condensation polymerization of HDA and atom transfer radical polymerization (ATRP) as of St PHDA was first obtained via enzymatic condensation polymerization catalyzed by Novozyme‐435. Subsequently, one terminus of the PHDA chains was modified by reaction with α‐bromopropionyl bromide and the other terminus was protected by chlorotrimethylsilane. The resulting monofunctional macroinitiator was used subsequently in ATRP of St using CuCl/2,2′‐bipyridine as the catalyst system to afford diblock copolymers including biodegradable PHDA blocks and well‐defined PSt blocks. Polymeric nanospheres were prepared by self‐assembly of the PHDA‐b‐PSt diblock copolymers in aqueous medium. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
The synthesis of polystyrene‐b‐polydimethylsiloxane‐b‐polystyrene (PSt‐b‐PDMS‐b‐PSt) copolymers is described. Commercially available difunctional PDMS containing vinylsilyl terminal species was reacted with hydrogen bromide resulting in the PDMS macroinitiators. The terminal alkyl bromide groups were then used as initiators for atom transfer radical polymerization (ATRP) to produce block copolymers. Using this technique, triblock copolymers consisting of a PDMS centre block and polystyrene terminal blocks were synthesized. ATRP of St from those macroinitiators showed linear increases in Mn with conversion, demonstrating the effectiveness of ATRP to synthesize a variety of inorganic/organic polymer hybrids. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

18.
The synthesis of diblock copolymers using atom transfer radical polymerization, ATRP, of n‐butyl methacrylate, BMA, and methyl methacrylate, MMA, is reported. These copolymers were prepared from 2‐bromoisobutyryl‐terminated macroinitiators of poly(MMA) and poly(BMA), using copper chloride, CuCl,/N,N,N′,N″,N″‐pentamethyldiethylenetretramine, PMDETA, as the catalyst system, at 100°C in bulk and in benzonitrile solution. The block copolymers were characterized by means of size‐exclusion chromatography, SEC, and 1H‐NMR spectroscopy. The SEC analysis of the synthesized diblock copolymers confirmed important differences in the molecular weight control depending on the reaction medium (solvent effect) and the chemical structure of the macroinitiator used. In addition, differential scanning calorimetry, (DSC) measurements were performed, showing for all the copolymers a phase separation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2683–2691, 2002  相似文献   

19.
Well‐defined polydimethylsiloxane‐block‐polystyrene (PDMS‐b‐PS) diblock copolymers were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization using a functional PDMS‐macro RAFT agent. The RAFT polymerization kinetics was simulated by a mathematical model for the RAFT polymerization in a batch reactor based on the method of moments. The model described molecular weight, monomer conversion, and polydispersity index as a function of polymerization time. Good agreements in the polymerization kinetics were achieved for fitting the kinetic profiles with the developed model. In addition, the model was used to predict the effects of initiator concentration, chain transfer agent concentration, and monomer concentration on the RAFT polymerization kinetics. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号