首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
镁合金等通道转角挤压(ECAP)技术的研究和展望   总被引:1,自引:1,他引:0  
综述了等通道转角挤压(ECAP)技术在镁合金上的研究进展,主要包括等通道转角挤压的技术原理、不同工艺参数的影响、显微组织特性和力学性能等方面,探讨了ECAP技术在镁合金上的研究热点,并指出了当前镁合金ECAP技术存在的主要问题及今后的发展方向.  相似文献   

2.
方晓强  李淼泉  林莺莺 《材料导报》2006,20(10):107-110,115
等通道转角挤压(equal channel angular pressing,ECAP)是一种强塑性变形技术,能有效细化材料的微观组织,提高材料性能,改善难变形材料的成形性.简述了ECAP技术制备超细晶钛合金的原理和技术现状,分析了不同工艺参数对钛合金ECAP变形过程和材料性能的影响以及晶粒细化的微观机制.  相似文献   

3.
卢庆亮 《材料导报》2006,20(10):163-163
镁及镁合金作为目前工业应用中最轻的结构材料之一,具有良好的应用前景,然而由于镁合金自身强度较低、抗氧化性能差以及高温抗蠕变性能差等问题,使其作为某些结构件的应用受到限制,为进一步扩大其应用,人们采用了多种方法来提高其综合力学性能.二十面体准晶相(简称Ⅰ-phase)由于其特殊的结构而具有优异的力学性能,如高强度、高硬度等,将Ⅰ-phase作为一种增强相引入到镁合金中可大大提高镁合金的力学性能,为新型镁合金的开发和实际应用提供了一种新途径.本文采用常规铸造法制备了含有粗大网状Ⅰ-phase和α-Mg两相组织的Mg-Zn-Y合金.研究了合金含量及Zn/Y比对Mg-Zn-Y合金显微组织和力学性能的影响,探讨了热处理工艺对合金中相析出行为及Ⅰ-phase热稳定性的影响.以时效处理后的Mg-Zn-Y合金为研究对象,研究了两种塑性变形工艺(常规热挤压和等径角挤压变形)对合金显微组织和力学性能的影响,并对合金的细化机制、断裂行为与强化机制进行了研究.研究结果表明,在Y含量为0.3%~2.0%(at),Zn含量为1.7%~6.0%(at)的富镁Mg-Zn-Y合金中,合金的铸态组织及相组成取决于Zn/Y比和Zn含量,Zn/Y比为6时,合金的铸态组织由α-Mg基体和晶界上富镁相与Ⅰ-phase两相共晶组织组成;在所研究的合金成分范围内,合金中Ⅰ-phase的形成及其体积分数与合金的凝固速度有关,采用快速凝固的方法得到的合金中,由于第二相的形核及长大受到抑制,形成的Ⅰ-phase的体积分数相对于常规铸造工艺下制备的合金中Ⅰ-phase的含量有所减少,同时发现,合金的极限抗拉强度和屈服强度随合金中Ⅰ-phase体积分数的增加而增加,但合金的延伸率略有降低;在400℃、24h的热处理工艺下,Mg95Zn4.3Y0.7合金基体上有球形Ⅰ-phase析出,且析出的Ⅰ-phase在随后的时效处理中表现出热稳定性;在190℃不同时效时间下合金基体中的析出相为密排六方结构的MgZn2相,其析出行为与Mg-Zn二元合金类似.Mg-Zn-Y合金的热挤压结果表明,通过挤压变形可以显著细化合金的晶粒组织,合金的晶粒大小可由变形前的40~60μm减小到8~15μm,在挤压过程中位于晶界的Ⅰ-phase被破碎并较均匀地分布在基体合金中,随着挤压比的增大和挤压温度的降低,晶粒进一步细化,Ⅰ-phase的弥散程度增加.挤压变形可以显著提高Mg-Zn-Y合金的强度、硬度和延伸率;随着挤压比的增大,合金的强度、硬度和延伸率均有所增加;在所研究的3种合金中,Mg95Zn4.3Y0.7合金在523K以25:1的挤压比挤压后,具有较高的力学性能,其极限抗拉强度为287MPa,屈服强度为203MPa,延伸率为14.1%.对于预挤压态Mg-Zn-Y合金的ECAP变形结果表明,ECAP对于预挤压态Mg-Zn-Y合金组织的细化是一个不断加强的过程,1道次ECAP变形后,在一些粗大晶粒之间分布着许多细小的晶粒,随变形道次的增加,原始粗大的晶粒消失,形成均匀细小的等轴晶粒,平均晶粒尺寸为1~3μm,同时在ECAP过程中Ⅰ-phase被破碎并呈弥散分布.ECAP变形1道次可以显著提高Mg-Zn-Y合金的抗拉强度、屈服强度和延伸率,Mg95Zn4.3Y0.7合金ECAP变形1道次后力学性能指标σb=331MPa,σ0.2=223MPa,δ=19.4%.Mg-Zn-Y合金以A、BA、Bc、C等4种不同工艺路线进行8道次ECAP变形后的显微组织差异不大,均形成细小的等轴晶粒;4种工艺路线在1~8道次的变形过程中,合金的力学性能变化不同,对于路径A和BA,随着变形道次的增加,合金的抗拉强度、屈服强度和延伸率变化幅度不大,对于路径BC和C,变形道次超过4次后,产生的变形织构的弱化作用导致合金的屈服强度迅速降低,但是合金仍保持较高的抗拉强度和延伸率.通过对ECAP变形过程中Mg-Zn-Y合金晶粒细化过程的分析,结合其力学性能的变化得出ECAP变形的细化机制和准晶相强化机制:ECAP对于准晶增强Mg-Zn-Y合金的细化机制主要是基体在不同变形路径下的连续剪切变形机制和准晶粒子对于基体的剪切及钉扎机制;准晶增强Mg-Zn-Y合金ECAP变形过程中存在3种强化机制:细晶强化、第二相粒子强化和位错强化,3种强化机制分别在ECAP变形的不同阶段起主导作用,在共同的强化作用下提高合金的强度.  相似文献   

4.
ECAP法制备细晶ZK60镁合金的微观组织与力学性能   总被引:3,自引:0,他引:3  
利用等通道转角挤压法(ECAP)制备出了细晶ZK60合金,通过金相组织观察,拉伸性能测试,EBSD和透射电镜(TEM)研究了不同挤压温度和挤压道次对合金组织与性能的影响.结果表明:ZK60镁合金在210~240℃温度范围内进行ECAP挤压能获得较好的晶粒细化效果;在240℃进行ECAP挤压时,随着挤压道次的增加,合金晶...  相似文献   

5.
研究了回火温度对低合金调质钢力学性能和显微组织的影响。结果表明:淬火态为具有自回火析出物的板条马氏体,具有良好的强韧性配合;在250℃左右回火后片状碳化物析出量增加,提高了屈服强度;在400℃回火后在板条界析出碳化物薄壳,导致回火脆性现象;高温回火后板条形态仍普遍存在,局部区域的板条合并成铁素体块晶。在550℃以上回火析出大量纳米碳化物,渗碳体明显粗化.细晶强化和析出强化是实验钢的主要强化方式。在回火过程中组织演变及析出物性质直接影响拉伸曲线特征和n值。  相似文献   

6.
采用光学显微镜(ROM)、扫描电子显微镜(SEM)、广角X射线衍射(WAXD)、动态力学分析(DMA)和仪器化冲击仪对剪切塑性变形后等规聚丙烯(iPP)的结构和性能进行了研究。剪切塑性变形通过等通道转角挤压技术获得。结果表明,剪切塑性变形使iPP球晶变为近椭圆形,其长轴沿着剪切方向取向排列,iPP的结晶度降低,动态储能模量(E')增加,晶片间分子链活动性降低。根据微纤模型分析剪切变形后iPP的冲击断裂行为,表明取向微纤和系分子的存在使iPP的断裂需要更多的裂纹引发能和扩展能,并带来悬臂梁缺口冲击强度的增加,是未变形试样的4.8倍。  相似文献   

7.
利用晶体塑性有限元(Crystal Plasticity Finite Element,简称CPFE)子程序和ABAQUS商业软件对多晶体纯铝等径弯曲通道(Equal Channel Angular Pressing,简称ECAP)变形进行了细观三维计算机模拟,获得多晶体纯铝在ECAP变形后各晶粒的取向分布数据,并据此得到晶粒取向的ODF图及极图.通过对结果的分析,初始晶粒取向随机分布的多晶体纯铝在ECAP单道次变形后,靠近模具内角的试样和靠近模具外角的试样由于形变的方式不同而形成了不同的织构形态,靠近模具内角的试样形成剪切织构,靠近模具外角的试样形成扭转织构.因此多晶纯铝在通道夹角Ф=90°、外圆角Ψ=20°模具中的ECAP变形并不是通过理想的纯剪切变形实现的.  相似文献   

8.
通过固溶处理获得不同初始组织状态的S32750双相不锈钢样品,然后进行厚度压下量80%的冷轧变形和1050℃的退火处理,采用SEM-EBSD和XRD技术研究合金相界与晶界特征以及相组成分布情况,并利用拉伸实验、纳米压痕和双环电化学动电位再活化法(DL-EPR)分析不同初始状态样品的组织对力学性能与耐晶间腐蚀性能的影响规律。结果表明:高温固溶处理的合金样品经冷轧退火后晶粒细小均匀,两相分布接近1∶1,且相界占内界面(晶界+相界)比例较高,同相晶粒团簇程度最低,表现出优异的综合力学性能。合金样品经敏化处理后,σ相易沿α相晶界析出,高温固溶并经轧制退火后的样品中,由于α晶界比例较少且满足K-S取向关系的相界比例较高则又表现出良好的晶间腐蚀抗力。因此,通过适当的工艺来调控合金的相界与晶界分布可以实现材料强度和晶间腐蚀抗力的同步改善。  相似文献   

9.
为研究高温后超细晶纯铝的力学性能和耐腐蚀性能变化,本文在室温下对99.6%的纯铝(CP-Al)进行等通道转角挤压(ECAP)后,获得超细晶纯铝.在8道次、Bc挤压路径,不同退火温度下,通过X射线衍射、扫描电子显微镜、单向拉伸与硬度测试及电化学测试分析,对其力学性能、组织结构、耐腐蚀性进行了研究.实验结果表明,随着退火温度的升高,8道次ECAP纯铝的强度和硬度降低,塑性逐渐提高;其在未退火及150、250、350 ℃退火后的硬度和抗拉强度分别为99.4HV,279.6 MPa、94HV,276.2 MPa、80HV,220.6 MPa、47HV,209.5 MPa;延伸率分别为4.89%、5.68%、9.81%、12.10%;晶粒尺寸由612 nm增加到1 314 nm,晶面取向发生变化.在质量分数为3.5% NaCl溶液中,对8道次ECAP纯铝在不同退火温度下分别进行了极化曲线和电化学阻抗谱(EIS)测试,并观察了显微结构图,结果表明,ECAP 8道次挤压后,随着退火温度的增加纯铝的腐蚀电流密度由未退火时的5.756 μA/cm2略减少到150 ℃的5.732 μA/cm2,而后增加到300 ℃的6.846 μA/cm2,腐蚀形貌发生改变.退火温度为150 ℃时,纯铝表现出更好的耐腐蚀性能,这是由于退火温度增加会减少材料缺陷,但晶粒增大对耐腐蚀性的抑制高于材料微观结构改善对耐腐蚀性的促进.  相似文献   

10.
综合原料的热物理性能分析和配比设计,实现了C/C复合材料载体孔隙体积的精细控制,采用热压-熔渗两步法在低温条件下制备了具有高致密、低残余Si含量特征的短碳纤维增强C/C-SiC复合材料。系统解析了C/C-SiC复合材料成型过程中的结构演变行为,研究了短纤维增强C/C-SiC复合材料的力学性能和失效机制。结果表明:多孔C/C复合材料载体孔隙的孔径呈双极分布特征,添加芳纶纤维可提高网络孔隙结构的连通性,具有显著的孔隙结构调控作用。SiC基体以网络骨架形态分布于C/C-SiC复合材料内部,与纤维束形成了强界面结合钉扎结构,高含量纤维协同作用下使C/C-SiC复合材料具有优异的综合力学性能,添加芳纶纤维可明显增加复合材料内部裂纹扩展路径,提高C/C-SiC复合材料的断裂韧性。碳纤维的面内各向同性分布及陶瓷相层间均匀分布对C/C-SiC复合材料承载、摩擦稳定性提升均具有积极作用。  相似文献   

11.
对ER8车轮钢轮辋材料在-40℃、-20℃、0℃、25℃(室温)下,分别进行力学性能研究,利用激光共聚焦显微镜、场发射扫描电子显微镜对其组织和断口进行表征。结果表明:-40℃时,轮辋材料的抗拉强度和屈服强度分别提高了5.8%和7.1%,强度指标(抗拉强度和屈服强度)与温度几乎呈线性关系,塑性指标(延伸率与断面收缩率)均下降约2%;轮辋材料冲击韧性对温度非常敏感,随温度下降,其冲击韧性迅速降低,-40℃冲击功降幅达60%;轮辋材料-40℃时的疲劳寿命高于室温的疲劳寿命,-40℃时疲劳源和裂纹扩展区二次裂纹都较室温时的细小,室温时ac(疲劳裂纹临界尺寸)约为3.2 mm,-40℃时,ac约为4 mm。  相似文献   

12.
细化晶粒的新方法——等径转角挤压   总被引:6,自引:0,他引:6  
李伟  郑子樵  李世晨 《材料导报》2001,15(10):25-28
介绍了等径转角挤压(Equal-Channel Angular Pressing)这种细化晶粒的新工艺方法。分析了利用该方法所制备材料的微观结构以及各种工艺参数对材料微观结构和性能的影响。  相似文献   

13.
在众多阻尼材料中,金属阻尼材料既能满足高阻尼减振降噪性能,又具有较高的强度,是理想的阻尼材料.为了提高商业纯铜的力学性能,分析晶粒细化程度对纯铜力学性能和阻尼性能的影响,在室温下对商业纯铜棒进行12道次BC路径等通道转角挤压(ECAP)实验.对挤压后样品进行单轴微拉伸试验和高循环拉伸疲劳试验研究其力学性能;通过动态力学...  相似文献   

14.
采用连续等通道转角挤压工艺,以连续的方式对Al-Ti-C合金进行多道次挤压,通过观察微观组织演化,探讨晶粒细化机理和力学性能变化。结果表明:连续等通道转角挤压工艺可有效细化Al-Ti-C合金微观组织,晶粒尺寸减小至1μm左右,形变诱导是变形过程中最主要的晶粒细化机制;高密度位错堆积引起Al基体和TiAl_(3)界面的裂纹以及TiAl_(3)内部的空洞产生,裂纹进一步扩展贯穿整个TiAl_(3)颗粒,最终导致第二相TiAl_(3)组织的细化,同时细小的第二相TiAl_(3)组织的钉扎机制和剪切机制促进了Al基体细化;连续等通道转角挤压1道次后,合金硬度提升最明显,与原始态相比提高59.2%;之后随挤压道次的增加,硬度提升的趋势变缓,合金塑性下降,韧性提高。  相似文献   

15.
在VCoNi中熵合金中添加间隙碳(C)原子制备出(VCoNi)_(100-x)C_(x)(x=0,0.1,0.4,1和2.8),系统研究了C含量对其微观组织、力学性能以及摩擦磨损性能的影响。结果表明,当C含量为0~1时,随着C含量的提高,均匀态和再结晶态样品的晶粒尺寸均减小,第二相颗粒的含量提高;均匀态样品的织构逐渐向α取向线上聚集,而再结晶态织构均在α线上聚集,且织构最强点均在α取向线上。当C含量为1~2.8时,均匀态样品中出现粗大的胞晶,第二相以棒状和颗粒状并存,退火孪晶减少,未出现典型的织构类型。当C含量为0.1时再结晶态样品的强韧化性能最优,可归因于细晶强化、间隙强化和第二相强化。加入C原子使再结晶样品的摩擦磨损性能提高,可归因于磨粒磨损减弱,而粘着磨损和氧化磨损增强。  相似文献   

16.
当前摇摆墙体系研究广泛,但由于放松了墙底约束,抗侧刚度减小,使得结构整体变形过大。在框架剪力墙双重结构体系中,利用剪力墙和框架在地震作用下不同的变形模式,在两者之间连接屈曲约束支撑(BRB)可有效降低框架结构的水平加速度响应;进一步在剪力墙底设置参数可控的金属阻尼器(MD),防止剪力墙底部破坏的同时,整体结构在BRB与MD共同作用下,整体结构地震响应也得到有效改善。以某六层混凝土框架剪力墙为例,利用ABAQUS有限元软件并结合UMAT二次开发接口的PQ-Fiber用户子程序,建立了框架剪力墙非线性有限元模型,变化BRB和MD初始刚度和屈服强度,进行弹塑性动力时程分析。结果表明:在BRB和墙底MD的双重耗能作用下,当BRB和MD屈服强度取值一个合适的属性范围,双重耗能框架剪力墙结构的地震响应得到了明显改善。  相似文献   

17.
减压环是柔性拦截结构中的重要耗能部件,对结构的能量耗散及过载保护有着重要作用。该文分别开展GS-8002型单减压环和减压环组的拟静力拉伸试验、重物下落动力试验和足尺冲击试验。分析不同试验条件下减压环的变形和受力特征。试验表明:动荷载作用下,启动荷载增大,并联减压环组增幅最大;减压环的拉力曲线具有明显的脉冲特性,串联减压环组的脉冲效应更为突出,且靠近整体系统一侧的减压环变形较大,靠近固定端一侧的减压环变形较小,并联减压环组和单减压环的脉冲效应相近。提出考虑动力特性的减压环四折线力学模型,该模型能够较好的反映减压环的工作性能特点。基于该分析模型,给出不同试验工况下GS-8002型减压环性能指标的等代关系,便于实际工程中的设计与应用。  相似文献   

18.
采用简化的两质点隔震结构模型研究随机地震激励下结构设计参数随机性对结构位移响应与可靠度的影响。隔震层和上部结构分别采用Bouc-Wen模型和刚度退化的Bouc-Wen模型来模拟,结合概率密度演化方法和基于极值分布的可靠度理论,求解不同场地条件、阻尼比、周期比与屈重比下隔震层与上部结构的层间位移响应信息与整体可靠度,并对设计参数进行优化。研究结果表明:概率密度演化方法能够有效评估隔震结构的抗震性能;通过对设计参数的适当取值,能使隔震层与上部结构位移响应均最小,从而提高隔震结构整体可靠度。  相似文献   

19.
通过定量核磁共振碳谱(13C-NMR谱)、广角X射线衍射(WAXD)和差示扫描量热分析(DSC)对不同数均相对分子质量的环氧乙烷-四氢呋喃无规共聚醚P(E-co-T)的序列结构和结晶性能进行了研究;以不同的P(E-co-T)无规共聚醚制备了一系列热固性聚氨酯弹性体,并对其网络结构和力学性能进行了研究。定量13C-NMR确认了P(E-co-T)无规共聚醚分子链中存在[THF]n微嵌段结构,并计算了不同相对分子质量P(E-co-T)无规共聚醚中微嵌段的含量。WAXD和DSC结果表明,等摩尔组成的P(E-co-T)无规共聚醚在-40℃时发生了结晶,且不同相对分子质量P(E-co-T)无规共聚醚的结晶能力与其分子链中[THF]n微嵌段结构的含量密切相关。聚醚聚氨酯弹性体的力学测试结果则表明,20℃和60℃时,随着聚醚相对分子质量的增加,聚氨酯弹性体的拉伸强度逐渐降低,断裂延伸率逐渐增加;然而,-40℃时则表现出截然相反的变化趋势。-40℃时聚醚聚氨酯弹性体结晶能力的差异是导致其低温力学性能不同的主要原因。  相似文献   

20.
以(聚苯乙烯(PS)-g-线型低密度聚乙烯(LLDPE))-g-马来酸酐(MAH)为相容剂,改变混合方法,制备了具有不同微观结构的尼龙6(PA6)/LLDPE/PS(60/20/20,质量分数)三元共混物。根据热力学、动力学因素,预判了共混物的微观结构;再结合扫描电镜和力学性能测试,考察了微观结构对力学性能的影响。结果表明,简单共混时,因界面张力的作用,在PA6中PS会包裹LLDPE形成壳核结构;该增容剂黏度大,增容时合适的混合方法,使其更易扩散至相界面,有利于阻碍PS包裹LLDPE,使两相独立分散;预判结果与测试结果相一致;壳核结构的出现,会掩盖LLDPE(核)的韧性,使材料呈现出硬而脆的特点;两相独立分散,在保证材料刚性的同时又能提高韧性;采用(PS-g-LLDPE)-g-MAH先与PS、LLDPE混合再与PA6混合的共混法时,增容效果最好,其缺口冲击强度相较于简单共混物提高了近5倍,材料整体表现出硬而韧的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号