首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为研究复合材料夹芯梁在轴压作用下的屈曲、后屈曲特性及承载能力,进行了试验研究与有限元仿真。首先,开展了系列复合材料夹芯梁屈曲特性试验,研究了铺层比例、梁长度、表层厚度及芯层厚度等因素对其屈曲、后屈曲破坏模式及极限承载的影响;然后,基于非线性屈曲理论,采用三维内聚力界面单元模拟面芯脱粘,并引入初始预变形及材料损伤准则对复合材料夹芯梁在轴压下的屈曲特性及极限承载进行仿真研究。结果显示:界面脱粘是屈曲破坏的重要模式;仿真计算的极限承载与试验结果相比,误差控制在10%以内。所得结论表明该方法可有效预报复合材料夹芯梁的后屈曲路径、破坏模式及极限承载。   相似文献   

2.
为探究静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度,以湿法缠绕工艺制备中厚玻璃纤维增强树脂基复合材料(GFRP)圆柱耐压壳结构模型,对其初挠度进行测试,并开展静水压破坏试验,分析了结构的极限承载能力、应变响应和破坏模式。基于实测初挠度及破坏模式,建立含缺陷复合材料圆柱壳的非线性分析有限元模型,同时考虑壳体几何缺陷及承压过程中的复合材料面内损伤,编制ABAQUS接口子程序USDFLD,对模型的损伤过程进行数值模拟,获得静水压下含缺陷中厚复合材料圆柱壳的渐进失效过程,并与试验结果对比验证。研究表明:在静水压下中厚GFRP圆柱壳结构在破坏前载荷几乎呈线性增加,最终破坏模式为材料的压缩破坏,整体屈曲破坏模式不明显。考虑结构的几何缺陷和材料损伤演化后,采用非线性有限元模拟得到的壳体极限强度与试验结果吻合良好,可以作为预测含缺陷中厚复合材料圆柱壳极限强度的方法。采用该方法对影响中厚复合材料圆柱耐压壳极限强度的关键参数进行了研究,为深海复合材料耐压壳的研究设计提供参考。  相似文献   

3.
夹芯圆柱壳稳定性优化   总被引:5,自引:0,他引:5  
研究了在轴压载荷作用下圆柱壳结构的失稳模态和结构承载效率,分析了空心圆柱壳厚度对失稳模态和承载效率的影响,以及圆柱壳填充轻质芯体对提高承载效率的作用;研究了圆柱壳结构的基于参数化建模、稳定性分析以及承载效率优化设计的一体化方法,并基于商用软件PATRAN的PCL语言予以实现。针对特定夹芯圆柱壳结构的稳定性分析和优化表明,空心薄壁圆柱壳结构在轴压载荷作用下容易失稳,结构承载效率低。适当增加壳体厚度,不但提高抗屈曲能力,而且也提高了结构承载效率。但厚度增加到一定限度后,进一步增加壳体厚度会提高结构的失稳荷载,但承载效率下降。利用泡沫状材料填充薄壁圆柱壳结构可以提高圆柱壳的结构抗屈曲承载能力和承载效率。通过优化壳体壁厚和芯体材料的相对密度,可有效地提高结构的承载能力和承载效率。  相似文献   

4.
为研究真空导入成型的玻璃纤维增强树脂基复合材料-Balsa轻木(GFRP-Balsa)夹芯梁弯曲疲劳性能,进行了普通无格构、单格构增强、双格构增强三种类型共42根试件在不同荷载等级下的四点弯曲疲劳试验,得到夹芯梁的弯曲疲劳破坏模式、疲劳寿命和损伤演化规律,分析了三种类型夹芯梁在弯曲疲劳载荷下不同的损伤机制。研究结果发现,无格构夹芯梁的失效模式统一为芯材剪切和面板脱粘,格构增强夹芯梁的失效模式随格构设置及载荷等级变化,主要有上面板屈曲或压坏、下面板拉断等;采用指数经验模型拟合夹芯梁的疲劳荷载-寿命(S-N)曲线,得到三种类型夹芯梁的寿命预测公式;夹芯梁的位移演化历经"位移瞬降-平稳演化-损伤萌生至破坏"三个阶段,相对于无格构试件,格构增强试件在疲劳失效前有较明显预兆。  相似文献   

5.
结构轻量化是航空航天发展的永恒主题, 波纹夹层圆柱壳作为常见的轻质结构形式, 在航空航天领域具有很大的发展空间。采用模具热压法, 制备出纵向和环向碳纤维复合材料波纹夹层圆柱壳, 其中芯子整体成型, 面板分瓣制备。采用经典板壳屈曲理论, 分析纵向和环向波纹夹层圆柱壳的轴压力学性能, 得到了欧拉屈曲、整体屈曲、局部屈曲和面板压溃4种失效模式下的极限载荷理论公式。绘制出结构的失效机制图, 直观显示出了失效模式与试件尺寸之间的关系。通过对纵向和环向波纹夹层圆柱壳的轴向压缩试验, 获得了结构的载荷-位移曲线及局部屈曲和面板压溃2种失效模式。结果表明:纵向波纹夹层圆柱壳的轴向承载能力及载荷/质量效率优于环向波纹夹层圆柱壳, 在一定范围内增加圆柱壳面板的厚度、减小圆柱壳的高度可提高结构的载荷/质量效率。   相似文献   

6.
陈悦  朱锡  朱子旭  李华东 《材料导报》2017,31(7):150-154
为探究穿透裂缝对复合材料缠绕圆柱壳承载能力及失效模式的影响,首先开展不同壁厚含预裂缝复合材料缠绕圆柱壳轴向压缩试验。对于A系列厚壁圆柱壳,裂缝导致承载能力下降53.96%,失效模式由局部屈曲转化为裂缝扩展、脆性断裂;而B系列薄壁圆柱壳均发生局部屈曲,裂缝使承载能力下降12.59%。其次,采用有限元软件ABAQUS 6.14,基于非线性RIKS算法,建立轴压作用下含预裂缝复合材料圆柱壳极限承载能力计算模型,通过引入Hashin失效准则及损伤演化判据,预测结构渐进破坏模式及极限荷载。数值结果与试验数据吻合良好,最大误差为7.01%,验证了数值算法的可靠性。在此基础上,探讨裂缝方向、缠绕角度对含预裂缝复合材料圆柱壳极限承载的影响,可知:对于±55°螺旋铺层复合材料圆柱壳,随裂缝角度α增加,极限承载能力先升高再降低,当α=45°时,具备最大承载能力;对于含开缝角α=15°、45°、55°缠绕圆柱壳,随缠绕角θ增加,其承载能力呈先上升后下降趋势。且开缝角越小,缠绕角度对极限荷载的影响越大,当缠绕角θ=30°时,达到最大承载能力。  相似文献   

7.
碳纤维增强金字塔点阵夹芯结构的抗压缩性能   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种碳纤维增强复合材料点阵夹芯结构的一体化成型工艺方法。该方法克服了传统夹芯结构面板与芯子之间因需要二次粘接或焊接的方法所带来弱界面的缺点。将纤维杆两端埋入面板内,使面板与芯子成为一体而不存在明显的界面。对用该方法制备的碳纤维增强金字塔点阵夹芯板进行平压试验,研究发现随着载荷的增加,纤维杆发生弹性屈曲并在中间部位出现断裂。理论分析了点阵夹芯结构平压载荷下的弹性模量和纤维杆极限屈曲载荷。通过与传统夹芯材料相比较发现,这种新型复合材料点阵夹芯结构具有密度低、比强度和比刚度高等优点。   相似文献   

8.
陶杰  李峰  邵飞 《复合材料学报》2018,35(5):1123-1130
为解决复合材料泡沫夹芯结构面板局部屈曲与面芯脱粘的突出问题,提出了一种由筋条增强的玻璃纤维增强树脂基复合材料(GFRP)面板与泡沫芯层组合而成的新型夹芯结构。采用真空辅助树脂导入技术制备试验件,通过面内压缩与双悬臂梁试验,对比分析了加筋增强夹芯板与未加筋夹芯板的受力特性、失效模式和面芯粘结性能。面内压缩试验显示,与未加筋夹芯板相比,加筋增强夹芯板的失效模式由面板局部屈曲转化为面板压缩剪切破坏或整体屈曲,在GFRP材料使用量相同的情况下,试件长度为130 mm的加筋增强夹芯板平均失效荷载提高了40.87%,长度为190 mm试件提高了35.63%。双悬臂梁试验显示,加筋增强夹芯板的裂缝在发展过程中受到筋条与面板之间纤维丝搭接约束,改善了界面粘结性能,与未加筋夹芯板相比,其平均能量释放率提高了57.35%。  相似文献   

9.
叶片结构强度是决定风电机组寿命和全寿命周期度电成本的关键因素。本文选取美国SNL 100 m玻璃纤维增强树脂复合材料(GFRP)风电叶片,根据关键截面的几何和复合材料铺层构造建立了叶片段三维有限元实体模型。分析了叶片段结构的非线性屈曲、胶接界面脱粘及复合材料失效的耦合行为。结果表明:挥舞载荷下叶片段首先出现复合材料失效,然后是胶接界面脱粘,最后出现结构胶失效;而摆振载荷下,叶片段最先出现非线性屈曲,接着依次出现复合材料失效、胶接脱粘和结构胶失效,且尾缘屈曲形变是胶接脱粘的驱动因素。   相似文献   

10.
本文作者基于"zig-zag"模型和Mindlin一阶剪切变形板理论,推导了复合材料夹层板屈曲分析的有限元列式,在该列式中考虑了面板的横向剪切变形和芯体的面内刚度对夹层板力学性能的影响。针对具有面板和芯体间界面脱粘和纤维增强树脂基体微裂纹损伤的夹层板损伤特征,分别提出了分层模型和多标量损伤模型,并推导了多标量形式的损伤本构关系。采用修正的 Newton-Raphson迭代格式求解含损复合材料夹层板的非线性稳定性性状。通过算例研究了脱粘面积、基体的损伤演化、表板的铺设方式及载荷形式对复合材料夹层板屈曲性态的影响。本文作者给出的有限元模型和结论,对复合材料夹层板结构设计的损伤容限的制定具有一定的参考价值。  相似文献   

11.
王伟  陈普会  李念 《复合材料学报》2016,33(11):2500-2509
为研究离位增韧对复合材料加筋板结构承载性能的影响,首先,分别对未离位增韧和离位增韧复合材料帽型长桁加筋板进行了三点弯曲试验,比较了2种加筋板的初始分层载荷、极限载荷以及试验现象;然后,利用ABAQUS建立了三维渐进失效模型,考虑长桁-蒙皮界面和复合材料层合板的失效,对界面的分层机制和蒙皮的失效过程进行了分析。结果表明:有限元结果与试验结果吻合较好,离位增韧仅能略微提高界面的初始分层载荷,但对极限载荷有较大提升;在分层起始阶段I型拉伸模式占主要作用,随着分层不断扩展,II型剪切模式占比持续增加,而剪切模式的高韧性正是离位增韧界面具有良好性能的重要原因。所得结论表明离位增韧界面有良好的抗剥离性能,且在剪切方向上的表现尤为突出。  相似文献   

12.
纤维增强复合材料薄壁圆管扭转失效分析   总被引:2,自引:0,他引:2       下载免费PDF全文
对碳纤维增强树脂基复合材料(CFRP)薄壁圆管的扭转屈曲、失效载荷和失效模式进行了试验和数值模拟。试验观察圆管在扭矩作用下的3种失效模式,分析了不同失效模式的特征和机理。考虑圆柱壳的初始缺陷和非线性屈曲等因素,利用ABAQUS建立了圆管屈曲和损伤的有限元模型。结果表明:屈曲诱发圆管表面微裂纹的产生和扩展,对圆管的失效有着加速作用;扭转失效过程中圆管层间应力较低,层间分层主要由管壁突然的破坏产生;圆柱壳的初始缺陷对屈曲和失效载荷的模拟影响较大,本文通过对比计算结果和试验数据确定了圆管的初始缺陷系数;损伤模型的数值模拟结果与试验数据相一致,验证了有限元模型的有效性。   相似文献   

13.
为了评估复合材料夹芯圆柱壳的振动和声辐射特性,专门设计了一个复合夹芯圆柱壳模型以及一个等质量的钢壳作为对比模型,进行水下振动和声辐射试验。试验结果表明:吸声壳和钢壳前七阶固有频率测试值与有限元仿真结果吻合较好,说明了实验结果的可靠性。钢壳和复合材料壳频响测试曲线与数值仿真结果在低频段的吻合程度更高,且钢壳频响测试曲线与有限元计算曲线吻合程度优于复合材料夹芯壳。从复合材料夹芯壳的减振效果来看,试验测试平均减振18.3 dB,数值计算结果平均减振18.9 dB,说明该芯材壳体具有良好的阻尼性能。从复合材料夹芯壳低频段的吸声效果来看,八个方位角处声压级最大降幅为5.05 dB,平均降幅为2.28 dB,表明该复合材料夹芯圆柱壳能够有效抑制低频线谱噪声。  相似文献   

14.
复合材料层合圆柱壳是一种常用的承载结构,在其制造、运输和使用过程中可能会出现脱层,这将影响圆柱壳的承载能力,因此,建立正确的分析模型来研究脱层壳的承载能力是非常有必要的。首先将含任意位置环向贯穿脱层的轴压圆柱壳分成多段子壳,用厚度的三次多项式和环向的三角级数模拟脱层壳屈曲时子壳的轴向和环向位移;然后利用变分原理导出了脱层壳的屈曲方程和定解条件;最后,将控制方程和定解条件写成状态空间形式并在轴向用状态空间方法进行求解。  相似文献   

15.
对含面板/夹芯界面中央分层缺陷复合材料蜂窝夹层板的压缩性能进行了试验研究和理论分析,考察了一种圆形分层和2种矩形分层缺陷对其压缩强度的影响,并采用子层局部屈曲模型对压缩强度进行了计算。结果表明:无缺陷夹层板表现为总体失稳破坏,而对于含分层缺陷的夹层板,则视分层形状及其大小的不同而表现出不同的破坏机制。对于矩形缺陷的长边与载荷方向垂直的夹层板,一般情况下面板子层局部屈曲对夹层板的最终破坏不起控制作用;对于矩形缺陷的长边与载荷方向平行的夹层板,表现为总体失稳破坏。压缩破坏过程中,面板子层屈曲起控制作用的夹层板,子层局部屈曲模型能够比较精确地预测其压缩强度。  相似文献   

16.
建立了复合材料层合加筋壁板的屈曲后屈曲有限元分析模型。该模型采用界面单元以有效模拟筋条和壁板之间的连接界面, 连接界面和复合材料层板分别采用Quads和Hashin失效准则作为失效判据, 引入材料刚度退化模型, 采用非线性有限元方法, 研究了复合材料加筋壁板在压缩载荷下的前后屈曲平衡路径及破坏过程。数值分析结果与实验结果吻合良好, 证明了该方法的合理有效性。详细探讨了筋条尺寸及界面单元强度等参数对加筋壁板屈曲后屈曲行为及承载能力的影响规律, 研究表明增加筋条截面惯性矩及筋条密度在一定程度上能有效提高加筋板的屈曲载荷与极限强度, 筋条密度增加到一定程度会引起结构破坏形式由失稳破坏?湮顾跗苹? 界面强度与铺层方式对极限强度有重要影响, 界面脱粘是引起加筋板最终破坏的重要因素。   相似文献   

17.
分别开展缝合气凝胶夹芯复合材料在不同温度下的面内压缩试验,研究材料在室温、300℃、600℃和800℃下的面内压缩力学性能,并采用微焦点工业CT扫描的方法对试样内部结构进行分析,结合有限元分析方法,探究其结构破坏机制。结果表明:在面内压缩载荷作用下,材料存在极限载荷,面板的局部屈曲、芯层的剪切破坏以及缝线柱的断裂是材料破坏的主要方式。随着温度的升高,材料的面内压缩模量和极限载荷也逐渐升高,面板破坏处的断口逐渐呈现出类似脆性的断裂。300℃、600℃和800℃下材料的面内压缩模量分别为室温的1.05倍、1.57倍和1.65倍;极限载荷分别为室温的1.14倍、1.46倍和1.67倍。室温下有限元分析结果和试验结果的对比,验证了缝合气凝胶夹芯复合材料面内压缩破坏模式的合理性。  相似文献   

18.
提出了一种等效理论来分析含损伤碳纤维增强树脂T300/QY8911复合材料层合板的分层屈曲。针对含贯穿脱层层合板产生面外弯曲后的受力特点,引入损伤界面的接触效应,根据精确模型所给出的多尺度变形失效机制,提出了一个基于刚度等效理论来分析损伤层合板结构失效的力学性能。通过将含脱层的区域等效成一个几何形状和铺设方式完全一致,但刚度相应折减的完善子板,运用三分区模型,根据板壳理论、复合材料力学等基本原理建立各子板的屈曲控制方程,同时结合边界条件和连续性条件求解。算例分析表明,本文所得的屈曲荷载与考虑接触效应精确模型所得的解析解及ABAQUS有限元结果高度吻合。该研究方法充分考虑了脱层带来的刚度降低以及由于分层界面处非线性抗穿透约束的影响,不仅大大简化了繁琐的推导过程和节省了计算量,而且揭示了深层次的力学机制,更为主要的是,该方法可以有效推广到含多分层损伤层合板的非线性力学性能的评估,为航空航天先进复合材料的结构设计和力学分析提供有力的技术支持。   相似文献   

19.
陈昊  柴亚南  迟坚  陆磊 《复合材料学报》2020,37(10):2463-2472
对复合材料机身曲板进行了环向弯曲加载试验,采用四点弯加载方式对考核段进行纯弯加载,设计一种加强连接方式避免加载段提前破坏,通过试验对机身曲板的环向稳定性和破坏模式进行了分析。同时,建立了基于内聚力单元的考虑长桁与蒙皮粘接界面损伤的有限元模型,分别使用Quads准则和Hashin准则作为界面和层合板的失效判据分析曲板结构的失效机制,计算结果与试验结果吻合较好。试验及有限元分析结果表明,长桁帽底蒙皮的局部屈曲引起长桁与蒙皮粘接的R区出现初始开裂,并最终扩展为长桁脱粘。随着蒙皮屈曲及长桁脱粘的扩大,蒙皮由局部屈曲变为整体失稳而失去承载能力,最终导致隔框承载过大而发生断裂。根据初始损伤模式,采取了长桁帽内全包工艺改进设计,改进后的曲板结构稳定性和承载能力分别提高了21.9%和16.8%。   相似文献   

20.
径向载荷作用下复合材料圆柱壳的非线性动力屈曲   总被引:1,自引:0,他引:1  
采用半解析法求解径向阶跃载荷作用下复合材料圆柱壳的非线性动力屈曲。基于一阶剪切变形理论,由Hamilton原理推导出包含横向剪切变形以及几何初缺陷的圆柱壳的非线性动力方程,位移及载荷沿周向采用级数展开,由Galerkin方法得到微分方程组,通过有限差分法求解;根据响应情况,由B—R准则判定屈曲,确定屈曲临界载荷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号