首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) has been used to investigate spectral and non-spectral interferences found with a conventional line source atomic absorption spectrometer in the determination of aluminum in pharmaceutical products containing elevated iron and sugar concentrations. A transversely heated graphite furnace was used as the atomizer in both spectrometers. The two most sensitive aluminum lines at 309.3 nm and 396.2 nm were investigated and it was found that an iron absorption line at 309.278 nm, in the vicinity of the aluminum line at 309.271 nm, could be responsible for some spectral interference. The simultaneous presence of iron and the organic components of the matrix were responsible for radiation scattering, causing high continuous and also structured background absorption at both wavelengths. The aluminum and iron absorption could not be separated in time, i.e., the iron interference could not be eliminated by optimizing the graphite furnace temperature program. However, an interference-free determination of aluminum was possible carrying out the measurements with HR-CS AAS at 396.152 nm after applying least squares background correction for the elimination of the structured background. Analytical working range and other figures of merit were determined and are presented for both wavelengths using peak volume registration (center pixel ± 1) and the center pixel only. Limits of detection and characteristic masses ranged from 1.1 to 2.5 pg and 13 to 43 pg, respectively. The method was used for the determination of the aluminum contamination in pharmaceutical formulations for iron deficiency treatment, which present iron concentrations from 10 to 50 g l− 1. Spike recoveries from 89% to 105% show that the proposed method can be satisfactorily used for the quality control of these formulations.  相似文献   

2.
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2–3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.  相似文献   

3.
Nonresonant cavity ringdown laser absorption spectroscopy (CRLAS) was applied for detection and characterization of airborne particulates. Sensitive detection of a variety of aerosols under ambient conditions was achieved. The method provides, for the first time, time-resolved absolute aerosol concentration, with spatial resolution (along a line). The first report on absorption spectroscopy of monodispersed aerosols (in the size range 100–200 nm) is provided, and comparisons are made with the bulk data. The results indicate the possibility of applying CRLAS for selective analysis of aerosols. A new method for estimating the aerosol refraction index is also obtained from the ringdown data.  相似文献   

4.
An electrochemical method based on adsorptive stripping chronopotentiometry (SCP) with a rotating mercury film electrode has been developed for the determination of dissolved iron (III) at subnanomolar concentrations in estuarine and coastal waters. The detection limit was 0.11 nM after adsorption time of 60 s. Compared to the other chronopotentiometric methods available for dissolved iron measurement in natural and estuarine waters, the procedure described here exhibits a 15-fold better sensitivity. Therefore, it allows one to accurately quantify concentrations commonly found in estuarine and coastal waters. Moreover, by using the speciation scheme proposed by Aldrich and van den Berg (Electroanalysis 10 (1998) 369), several forms could be measured, i.e. reactive iron (Fe R) and reactive iron (III) (FeIII R), or estimated, i.e. complexed iron (Fe C) and reactive iron (II) (FeII R). The method described here is reliable, fast, inexpensive and compact. It was applied successfully to the study of the chemical speciation of dissolved iron along the salinity gradient of the Aulne estuary (Brittany-France).  相似文献   

5.
A standard air-acetylene flame, attached to a high-resolution continuum source atomic absorption spectrometer, was used to determine sulfur via measurements of selected rotational lines of carbon monosulfide (CS) formed in the flame. The lines are part of the strong molecular absorption system around 258 nm. Their half-widths in the order of a few picometers are comparable to common atomic lines. The analytical method is characterized by simplicity, rapidity, reliability, and robustness. Potential chemical and spectral interferences were tested using nitric, hydrochloric, perchloric and hydrofluoric acids at concentrations up to 5% (v/v), and solutions of Al, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, and Pb at concentrations up to 2000 mg L−1. The only serious spectral interference occurred with Pb at concentrations higher than 200 mg L−1, which is due to the formation of lead sulfate in the solution. The limit of detection achieved for sulfur was 2.4 mg L−1, using the CS line at 258.056 nm and a measurement time of 5 s. A linear dynamic range of more than 3 orders of magnitude was obtained. The analytical results were verified by means of standard reference materials, yielding good precision and accuracy.  相似文献   

6.
The natural gypsum has been investigated by infrared, Raman, X-ray diffraction, optical absorption and electron paramagnetic resonance spectroscopy. The fundamental stretching and bending vibrations observed in the infrared region for SO42− and H2O are compared with the near-infrared overtones and combinations of these vibrations. MIR and Raman spectral features are attributed to sulfate fundamentals and lattice vibrations of H2O, SO42−. The charge transfer and ligand field transition bands were observed near 490, 630, and 800–900 nm and were compared to those of iron oxides. The optical absorption spectrum indicates the presence of ferric and ferrous ions in the mineral. The site symmetry of Fe(III) in the sample is tetragonally distorted. EPR results indicate the presence of the ferric ion in a tetragonally distorted state.  相似文献   

7.
Iodine has recently been of interest in atmospheric chemistry due to its role in tropospheric ozone depletion, modification of the HO/HO2 ratio and aerosol nucleation. Gas-phase iodine chemistry is tightly coupled to the aerosol phase through heterogeneous reactions, which are dependent on iodine concentrations and speciation in the aerosol. To date, the only method available for total iodine determination in aerosols is collection on filters by impaction and quantification by neutron activation analysis (NAA). NAA is not widely available to all working groups and is costly to commission. Here, we present a method to determine total iodine concentrations in aerosol impact filter samples by combustion of filter sub-samples (∼5 cm2) at 1,000 °C, trapping in deionised water and quantification by UV/Vis spectroscopy. Both quartz and cellulose filters were analysed from four separate sampling campaigns. The method proved to be sensitive (3σ = 6 ng absolute iodine ≈ 3 pmol m−3) precise (RSD ∼ 5%) and accurate, as determined by external and standard addition calibrations. Total iodine concentrations ranged from 10 pmol m−3 over the Southern Ocean to 100 pmol m−3 over the tropical Atlantic, in agreement with previous estimates. The soluble iodine concentration (extracted with water and measured by ICP-MS) was then subtracted from the total iodine to yield non-water-soluble iodine (NSI). The NSI fraction ranged from 20% to 53% of total iodine, and thus can be significant in some cases.  相似文献   

8.
The particular capabilities of a high-resolution continuum source absorption spectrometer were exploited to the determination of halogens in an ordinary air–acetylene flame. In the first part of the studies, a simple method was developed, which allows the determination of fluorine by measuring GaF molecular absorption. The molecules are generated in the presence of an excess of Ga in the flame. Under such conditions, all fluorine is converted into GaF, yielding an evaluable signal for the fluorine determination. Molecular bands of GaF were found between 211 and 214 nm; the strongest absorption band head at 211.248 nm was examined in detail to prove its applicability to analytical measurements. To this end, potential chemical and spectral interferences were tested, using various highly concentrated acids and metallic salt solutions. Since no serious interferences were found, the new method proved to be very reliable. As limit of detection, 1 mg L 1 fluorine in the presence of 10 g L 1 Ga was achieved, using a measurement time of five seconds. The linear dynamic range covers more than three orders of magnitude. Accuracy and precision were verified by analysis of a standard reference material (BCR No. 33).  相似文献   

9.
A new analytical system for a semi-continuous analysis of water-soluble fraction of particulate metals is described. The system combines the continuous sampling of atmospheric aerosols into deionized water using the Aerosol Counterflow Two-Jets Unit and on-line chemiluminescent detection of water soluble fraction of metals in collected aerosols. The potential of analytical system was studied using Fe3+, Cu2+ and Co2+ as model metals in atmospheric aerosols. The detection limits of particulate Fe3+, Cu2+ and Co2+ (S/N?=?3) are 24, 41 and 0.4?ng?m?3, respectively. The presented set-up allows the determination of concentration of water-soluble fraction of particulate metals in ‘real time’ with time resolution of 30?min. The system is sufficiently robust for the field application. The method has been applied to the measurement of selected metals in urban TSP (Total Suspended Particles) aerosols in Brno in the Czech Republic. The concentrations of particulate water-soluble Fe3+, Cu2+ and Co2+ were found in the range of 35 to 290, 42 to 462 and 0.5 to 9?ng?m?3, respectively.  相似文献   

10.
The voltammetric characteristics of Fe(III) oxinate at a mercury electrode, in the presence of 0.2 M tributylammonium perchlorate (tri-BAP) and 0.2 M tributylamine (tri-BA) as the supporting electrolyte have been studied in chloroform. With this supporting electrolyte a two electron quasi-reversible process for the reduction of Fe(III) oxinate was observed. Preceded by a solvent extraction of Fe(III) oxinate in chloroform, differential pulse polarography (DP) was used for the determination of iron. The calibration graph was linear over the concentration range 0.5–50 μM Fe(III) oxinate in chloroform and the detection limit was 1.5 μM. The proposed DP method has been used for the determination of ferric, ferrous and total iron in a mixture and successfully applied to the speciation of iron in rocks.  相似文献   

11.
Ultrafine heavy metal aerosols can have severe toxic and carcinogenic effects when inhaled in higher concentrations. The objective of this work was to develop a mobile continuous emission monitor (CEM) based on laser-induced plasma spectroscopy (LIPS) for an on-line analysis of chromium aerosols. The LIPS emission sensor was installed in an electroplating facility for a fast monitoring of particulate emissions to provide instantaneous feedback for process control. The prototype was tested in cooperation with an independent laboratory, which determined the total chromium content and the Cr(VI)/Cr(III) ratio in the exhaust stream by conventional filter analysis. The system provided both the necessary time-resolution and detection limits (14 μg m–3) for emission monitoring below the legal threshold (1 mg m–3) values. A good correlation was found between the on-line LIPS measurement and the independent reference analysis. Received: 22 March 1999 / Revised: 5 May 1999 / Accepted: 11 May 1999  相似文献   

12.
The speciation of uranium(VI) in micromolar aqueous solutions at ambient atmosphere was studied by attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy and by speciation modeling applying the updated NEA thermodynamic database. It can be shown that reliable infrared spectra of micromolar U(VI) solutions are obtained abolishing the restrictions of previous spectroscopic investigations to millimolar concentrations and, consequently, to the acidic pH range. A significant change of the U(VI) speciation can be derived from the spectral alterations of the absorption band representing the antisymmetric stretching mode (nu3) of the UO2(2+) ion observed upon lowering the U(VI) concentration from the milli- to the micromolar range at a constant pH 4 value. The acquisition of spectra of diluted U(VI) solutions allows the increase of the pH up to 8.5 without the risk of formation of colloidal or solid phases. The infrared spectra are compared to the results of the computed speciation patterns. Although a complete interpretation of the spectra can not be given at this state of knowledge, the spectral data strongly suggest the presence of monomeric U(VI) hydroxo species already showing up at a pH value > or = 2.5 and dominating the speciation at pH 3. This is in contradiction to the predicted speciation where the fully hydrated UO2(2+) is expected to represent the main species at pH values below 4. At ambient pH, a more complex speciation is suggested compared to the results of the computational modeling technique. The predicted dominance of the UO2(CO3)3(4-) complex at pH > or = 8 was not confirmed by the infrared data. However, the infrared spectra indicate the formation of hydroxo complexes obviously containing carbonate ligands.  相似文献   

13.
The analysis of amino acids by gas chromatography mass spectrometry (GC–MS) after their derivatization with N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide was investigated as an alternative approach for the determination of free (FAA) and combined amino acids (CAA) in aerosols. This technique showed excellent linearity with r2 values ranging from 0.9029 to 0.9995 and instrumental limits of detection ranging from 0.3 to 46 pg for the different amino acids. The quality of water used for sample extraction was found to be of utmost importance for achieving low blank levels of FAA and CAA. The addition of isopropanol during the extraction of aerosols was also shown to minimize the coextraction of inorganic salts that interfered with the analysis of FAA, Moreover, the ascorbic acid was found to be the most effective reagent for preventing the oxidative destruction of CAA during the hydrolysis process. By the analysis of spiked aerosol samples, the average recoveries determined for FAA and CAA were higher than 60% and the associated relative standard deviation was lower than 10% for the majority of amino acids. The application of the adopted method in background aerosols of the eastern Mediterranean enabled the unambiguous identification and quantification of 20 amino acids. The total concentration of FAA and CAA in aerosols ranged from 13 to 34 ng m−3 and from 29 to 79 ng m−3, respectively. The GC–MS based method is proposed to overcome several analytical difficulties usually encountered with the conventional HPLC-fluoresence technique.  相似文献   

14.
The purpose of the study was to optimise analytical methods for determination of the chemical speciation of mercury in studies of protective mechanisms of selenium. Optimisation of the methods was performed using CRM DOLT-2 (Dogfish liver), both in its original form and after separation of various fractions. The sample was homogenised with 10 mM Tris-HCl buffer (pH 7.6) and ultracentrifuged. The soluble phase obtained was applied to a size exclusion chromatography column (Sephadex ¶G-75 column) for separation of various protein fractions. Total mercury (total Hg), monomethyl mercury (MeHg) and selenium (Se) were determined in whole dogfish liver tissue and its soluble and insoluble phases (pellet). Different approaches for determination of total Hg and MeHg were compared. Simultaneous determination of MeHg and inorganic mercury (Hg2+) was based on alkaline dissolution and/or acid leaching, followed by ethylation, room temperature precollection, isothermal gas chromatography (GC), pyrolysis and detection with cold vapour atomic fluorescence spectrometry (CVAFS). The sum of MeHg and Hg2+ was compared to total Hg results obtained by acid digestion and CVAAS detection. The accuracy of MeHg determination was checked by its determination using acid leaching at room temperature, solvent extraction, back extraction into Milli-Q water, ethylation, GC and CVAFS detection. For the insoluble phase it is recommended to use solvent extraction for MeHg and acid digestion CVAAS for total Hg. For determination of MeHg and Hg2+ in the lyophilised sample and water soluble fractions containing low concentrations of mercury species, the simultaneous measurement of MeHg and Hg2+ after alkaline dissolution is the most appropriate method.  相似文献   

15.
A high-resolution continuum-source atomic absorption spectrometer with a xenon short-arc lamp as the radiation source, a compact double echelle monochromator with a focal length of 302 mm and a spectral resolution of λ/Δλ≈110 000, and a UV-sensitive charged-coupled device (CCD) array detector was used to investigate the spectral interferences found with a conventional line-source atomic absorption spectrometer in the determination of thallium in marine sediment reference materials. A transversely heated graphite furnace was used as the atomizer unit, and the samples were introduced in the form of slurries. A strong iron absorption line at 276.752 nm, which was observed at atomization temperatures >2000 °C in the vicinity of the thallium resonance line at 276.787 nm, could be responsible for some of the interferences observed with low-resolution continuum-source background correction. The outstanding feature at atomization temperatures <2000 °C was the electron excitation spectrum of the gaseous SO2 molecule that exhibited a pronounced rotational fine structure, and is for sure the main reason for the observed spectral interferences. The molecular structures could be removed completely by subtracting a model spectrum recorded during the atomization of KHSO4, using a least squares algorithm. The same results, within experimental error, were obtained for thallium in a variety of marine sediment reference materials using ammonium nitrate as a modifier, ruthenium as a permanent modifier in addition to ammonium nitrate, and without a modifier, using aqueous standards for calibration, demonstrating the ruggedness of the method. A characteristic mass of 15–16 pg Tl was obtained, and a limit of detection of 0.02 μg g−1 Tl was calculated from the standard deviation of five repetitive determinations of HISS-1, the sediment with the lowest thallium content.  相似文献   

16.
In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence–X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0–8.0 μm, 8.0–2.0 μm, 2.0–0.13 μm 0.13–0.015 μm (aerodynamic particle size) and 15–30 nm, 30–60 nm, 60–130 nm, 130–250 nm, 250–500 nm, 0.5–1 μm, 1–2 μm, 2–4 μm, 4–8 μm, 8–16 μm. Prior to the sampling “bounce off” effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1–10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible.  相似文献   

17.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

18.
Alginate-g-poly(vinyl alcohol) was physically cross-linked with Fe(II) ion in a surfactant-free emulsion system to form microparticles via in situ precipitation. The microparticles were subjected to oxidation in aqueous of pH 13 at ambient temperature and transformed into magnetic ones within minutes. X-ray diffractometry showed that magnetic Fe3O4 was formed and it was further confirmed with a vibrating sample magnetometer measurement. Scanning electron microscopy examinations indicated that the iron oxide was well embedded into ferrous alginate and the size of particles was around 0.2-1.2 μm.  相似文献   

19.
The238U and226Ra contents of small-volume aerosols are determined by a chemical analysis technique. Mean activity concentrations of238U and226Ra in aerosols over approximately ten years are 0.29·10–5 and 0.93·10–5 Bq/m3, respectively. The yearly variation of238U and226Ra in aerosols is small. The concentrations of226Ra are always larger than those of238U in the same sampling time. The correlation of238U and226Ra cannot be recogonized (r=0.18). The concentrations of summer samples are greater than those of winter samples for238U. One of the causes of seasonal difference may be due to the fact that the components of aerosols are different according to soil size, soil components, weathering states, etc.  相似文献   

20.
A method of simultaneous separation and indirect ultraviolet detection of different valence iron ions Fe2+ and Fe3+ by using ionic liquids as mobile phase additives and ultraviolet absorption reagents on a cation exchange column functionalized with carboxylic acid group was developed. The effects of ionic liquids, organic acids, detection wavelength, etc. on separation and detection of Fe2+ and Fe3+ were investigated and the mechanism was discussed. The pyridinium and imidazolium ionic liquids were not only ultraviolet absorption reagents of indirect ultraviolet detection but also effective components for separating Fe2+ and Fe3+. The separation and detection of Fe2+ and Fe3+ can be achieved using 0.5 mmol/L pyridinium ionic liquid?1.2 mmol/L methanesulfonic acid as the mobile phase. The determination of Fe2+ and Fe3+ had a good linear relationship in the concentration range of 1?100 mg/L. The limits of detection of Fe2+ and Fe3+ were 0.12 and 0.09 mg/L, respectively. This method was applied to the actual sample detection in the field of medical analysis. The spiked recoveries were between 97.3 and 99.5%, and the relative standard deviations were less than 0.6%. The method is simple, accurate, and reliable, and is an analytical method with universal and practical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号