首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文以二茂铁为主要原料,通过溶剂热法在190℃反应72h制备了核壳型Fe3O4/C磁性纳米颗粒。通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、X-射线能谱仪(EDS)、透射电子显微镜(TEM)、振动样品磁强计(VSM)、矢量网络分析仪对产物进行了表征。结果表明,产物为球形核壳结构的Fe3O4/C纳米颗粒,其尺寸在100~150nm之间,其中碳壳的厚度在10~20nm之间。室温下,产物的矫顽力(Hc)为13.635Oe,剩余磁化率(Mr)为5.00725emu/g,饱和磁化率(Ms)为17.6863emu/g。在2~18GHz范围内,产物厚度为5mm、频率为12.99GHz时,产物的微波反射率为-37.85dB。  相似文献   

2.
刘智峰  房迅  郭少波  汤波  季晓晖 《功能材料》2022,53(4):4216-4223
以纳米Au为核,在其表面负载Ag合成核壳型纳米Au@Ag复合材料,利用TEM、EDX、UV-Vis对材料进行表征。以甲基橙为目标污染物研究材料的催化加氢活性,并初步探讨其催化机制;用革兰氏阴性菌大肠杆菌(E.coli)和革兰阳性菌金黄色葡萄球菌(S.aureus)为模式菌研究材料的光抑菌活性和抑菌机制。结果表明,相比纳米Ag,纳米Au@Ag在8 min内对甲基橙的降解率为99%以上,加氢产物为对氨基苯磺酸钠和对二氨基苯;抑菌实验证明:相比黑暗环境中,300 W光照下的纳米Au@Ag具有更强的抑菌性能,在浓度为300μg/mL,光照10 min下的抑菌效率更高,并对细菌的迟缓期和对数期的生长阶段作用较为明显,对E.coli的细胞壁破坏较为严重。  相似文献   

3.
以硫酸锰为原料合成出球状MnCO3作为前驱体,加入KMnO4,通过化学沉淀法成功制备出粒径范围在0.5~1.0μm的核壳结构MnCO3@Mn3O4球形颗粒。通过对比实验发现,MnCO3、KMnO4和盐酸的添加量对最终产物的形成有很大的影响。电化学性能测试表明,核壳结构MnCO3@Mn3O4球形颗粒兼有双电层电容和赝电容特性,其最大比电容可以达到156F/g。  相似文献   

4.
为改善氧化石墨烯(GO)/Fe3O4复合材料的分散程度,利用三苯基膦(PPh3)对GO表面进行功能化改性得到改性氧化石墨烯(GOP),然后采用共沉淀法一步合成GOP/Fe3O4复合材料。通过场发射SEM、高分辨TEM、XRD、FTIR、Raman和VSM对GOP/Fe3O4复合材料的形貌、结构和磁性能进行表征。利用矢量网络分析仪(PNA)测试了GOP/Fe3O4复合材料的电磁参数并模拟计算其对电磁波的吸收性能。结果显示:GOP/Fe3O4复合材料的最大电磁波吸收强度值达到-25.4 dB,有效吸收频宽为6.0 GHz,较未改性GO/Fe3O4复合材料均有大幅度提高。   相似文献   

5.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

6.
Fe3O4/ 聚吡咯复合材料的制备及表征   总被引:22,自引:3,他引:19       下载免费PDF全文
以化学沉淀法制备Fe3O4 纳米粒子, 采用乙醇对Fe3O4 纳米粒子表面进行处理, 使其表面有机化, 然后通过乳液原位复合制备Fe3O4 / 聚吡咯复合材料。利用TEM, XPS, 四探针测试仪和震荡磁力计对其进行表征和检测。结果表明: 经醇处理的Fe3O4 纳米粒子的分散性得到明显改善, Fe3O4 纳米粒子被包覆在聚吡咯层内, 包覆层厚度为10 nm 左右, 复合材料具有优良的电性能和磁性能, 电导率e= 7. 69 s/ cm~13. 6 s/ cm, 饱和磁强度Ms= 12. 06 emu/ g~24. 38 emu/ g, 矫顽力Hc= 11 Oe~41 Oe。其环境稳定性明显优于纯聚吡咯。   相似文献   

7.
Fe3O4/CNTs纳米复合材料用水热法在乙醇和丙二醇的混合溶液中合成,尺寸为5~15 nm的四氧化三铁纳米颗粒均匀附着在碳纳米管表面。作为锂电池负极材料,合成的Fe3O4/CNTs纳米复合材料展现出了优异的长循环特性和倍率循环特性。在电流密度100 mA g-1的条件下,在300次循环充放电后容量仍然能够保持在605 mAh g-1。酸处理碳纳米管的加入为四氧化三铁提供了大量的生长点,显著减小了四氧化三铁颗粒的尺寸,阻止了充放电过程中颗粒的团聚,构建了独特的三维导电网,使复合材料展现出了优异的电化学性能。  相似文献   

8.
实现高电磁屏蔽性能的同时降低反射是目前电磁屏蔽材料所追求的。采用一步水热法合成直径为30~40μm,厚度为70~200 nm的Fe3O4纳米片,利用红外光谱、X射线衍射仪、扫描电子显微镜表征发现结晶度良好。改变Fe3O4纳米片含量,喷涂制备的Fe3O4/MXene/WPU复合膜的反射值能低至4.3 dB,反射功率(R)从0.81降至0.63,透射功率(T)仅为10-3数量级。同样,采用水热法制备了直径为180~200 nm、分散性良好的Fe3O4纳米微球。同等Fe3O4含量下纵向对比发现,含Fe3O4纳米片的复合膜电磁屏蔽性能稍高于含Fe3O4纳米球的复合膜。  相似文献   

9.
共沉淀法制备纳米Fe3O4及其对橙黄Ⅱ的降解   总被引:1,自引:0,他引:1  
通过共沉淀法制备Fe3O4纳米颗粒,采用X射线衍射(XRD)、扫描电子显微镜(SEM)和比表面孔隙分析(BET)对样品进行表征。以合成的纳米Fe3O4催化H2O2氧化降解橙黄Ⅱ,考察了共沉淀法制备过程中的Fe2+/Fe3+的摩尔比、反应温度、pH值、Fe离子浓度等因素对Fe3O4催化性能的影响。结果表明在Fe2+/Fe3+的摩尔比为3∶4、反应温度80℃、pH值为10、Fe离子浓度为0.1mol·L-1的条件下制备出的Fe3O4纳米颗粒催化活性最高,其粒径为20nm左右。并且未干燥的磁流体对橙黄Ⅱ的降解效率明显高于Fe3O4粉体。  相似文献   

10.
在碱性条件下,以共沉淀法合成Fe3O4,再以正硅酸乙酯和二乙烯三胺为原料,制备出Fe3O4复合材料(Fe3O4-SiO2-NH2)。采用FT-IR、VSM和SEM对其结构进行表征,并研究了复合材料对Cd2+的吸附性能。实验结果表明,在T=55℃、t=60 min、Cd2+溶液的初始浓度为100 mg·L-1、Fe3O4-SiO2-NH2的添加量为0.1 g时,该材料对Cd2+的吸附容量为71.4 mg·g-1。其吸附动力学行为更符合准二级动力学,热力学更适合用Langmuir等温吸附模型描述。Fe3O4-SiO2-NH2吸附Cd2+后洗脱再生,经过5次循环使用后,其对Cd2+的去除率仍然大于70%。   相似文献   

11.
Ag包覆Fe3O4复合粉体的制备及其性能研究   总被引:1,自引:0,他引:1  
曹晓国  张海燕 《功能材料》2007,38(10):1655-1657
用化学镀法,甲醛为还原剂,制备Fe3O4/Ag包覆复合粉体.用XRD、SEM和EDX对粉体进行表征.用重法测定粉体的抗氧化性能,并研究了AgNO3用量对Fe3O4/Ag包覆复合粉体的导电性能的影响.结果表明,用该法制备的Fe3O4/Ag包覆复合粉体能够实现表面银层包覆完整;Fe3O4粉镀银后的抗氧化性能得到一定程度的提高;AgNO3用量越多,Fe3O4/Ag包覆复合粉体的导电性能越好.  相似文献   

12.
首先,采用溶胶-凝胶法以锆酸四丁酯为原料制备了直径约为230nm单分散性ZrO_2亚微球;然后,以ZrO_2为前体,加入少量AgNO3,用物理方法将Sn2+离子吸附在ZrO_2表面,Ag+被还原成Ag0负载在ZrO_2表面合成Ag@ZrO_2晶种,加入甲醛合成核-壳纳米Ag@ZrO_2复合材料;最后用TEM、XRD和UV-Vis对制备的ZrO_2和Ag@ZrO_2进行表征,并研究其对金黄色葡萄球菌(S.aureus)和大肠杆菌(E.coli)的抑菌性能。结果表明:当Ag浓度为0.6mg/mL时,Ag@ZrO_2对S.aureus和E.coli的抑菌率分别为95.5%和99.0%。因此,Ag@ZrO_2作为理想的抗菌材料可以应用于日常生活和医疗实践中。  相似文献   

13.
以SiO2为模板, 采用溶胶-凝胶法合成核壳TiO2@SiO2复合材料, 用光沉积法在TiO2@SiO2表面沉积贵金属Ag合成核壳纳米Ag@TiO2@SiO2复合材料。采用透射电镜、X射线衍射、X射线光电子能谱和紫外-可见漫反射光谱进行表征。用罗丹明为目标污染物研究复合材料的光催化性能, 测试对金黄色葡萄球菌和大肠杆菌的抑菌性能。结果表明, 复合材料Ag@TiO2@SiO2在紫外光的照射下具有较高的催化性能, 且当含银浓度为0.6 mg/mL时, 复合材料对金黄色葡萄球菌抑菌率为93.41%, 对大肠杆菌的抑菌率为97.37%。Ag@TiO2@SiO2具有良好的催化性能和抑菌性能, 有望应用于水处理和医疗器械等领域。  相似文献   

14.
采用水热法以简单原料一步合成出Fe3O4/PMMA纳米复合材料,由于聚甲基丙烯酸甲酯(PMMA)的作用,Fe3O4由十几纳米部分聚集形成几百纳米的粒子,并在PMMA中分散较为均匀.复合粒子具有较高的饱和磁化强度,为超顺磁性。由合成的复合粒子制备得到的磁流变液具有较高的剪切屈服应力和储能模量,分别可达十几kPa和几MPa,其值随外加磁场的增大而增大。  相似文献   

15.
以石墨烯和纳米Fe3O4为原料,采用化学修饰的方法制备石墨烯负载四氧化三铁(G/Fe3O4)复合材料。通过透射电镜、X射线衍射仪、傅里叶红外光谱仪对复合材料进行表征;在SN5W-30润滑油中添加G/Fe3O4复合材料,利用等离子体光谱仪和四球摩擦试验机研究复合材料在润滑油中的分散稳定性和摩擦学性能。结果表明:使用油酸和硅烷偶联剂KH570共同修饰生成的G/Fe3O4复合材料在石墨烯表面分散效果比单独使用油酸修饰的好;沉淀稳定性实验表明:放置10d后,未添加复合材料的润滑油铁元素含量下降了48.3%,添加采用油酸修饰的复合材料铁元素含量下降了39%,添加采用油酸和KH570共同修饰的复合材料铁元素含量下降了31.1%;四球摩擦实验表明G/Fe3O4复合材料作为润滑油添加剂具有良好的摩擦学性能,使用油酸和KH570共同修饰的效果要比单独使用油酸修饰的好,最大无卡咬负荷PB增大了6.5%,摩斑直径减小了4.4%,摩擦因数降低了4.8%。  相似文献   

16.
通过分散共聚制得了聚(丙烯酸-丙烯腈-苯乙烯)(PAAS)三元共聚物微球,调整聚合反应介质乙醇与水的体积比及分散剂的用量,可将PAAS微球的粒径控制在230~680nm的范围内;扫描电子显微镜观察发现,所得微球粒径具有较好的单分散性.以该PAAS共聚物微球为载体,在二价和三价铁盐存在的条件下控制体系的pH,经共沉淀将Fe_3O_4纳米颗粒有效沉积在微球表面,得到了以PAAS为核,Fe_3O_4为壳的核-壳结构磁性复合微球;热重分析结果表明,复合微球上Fe_3O_4的含量达41%,对磁场具有明显的响应性.  相似文献   

17.
聚苯乙烯/Fe3O4纳米复合材料的制备与表征   总被引:2,自引:0,他引:2  
采用油酸为表面活性剂表面处理Fe3O4纳米粒子,将其分散在苯乙烯单体中,进行原位聚合,制备PS/Fe3O4纳米复合材料,对该复合材料的分散均匀性和结构进行了表征.实验结果显示,Fe3O4粒子在PS基体中分散均匀;包覆油酸的Fe3O4纳米粒子在基体中起到物理和化学交联点的作用,使得聚合物产生交联,并提高了其耐热性.  相似文献   

18.
用化学镀法,甲醛为还原剂,在水/乙醇介质中制备镀银Fe3O4粉.用XRD和SEM对粉体进行表征.用该法制备的镀银Fe3O4粉能够实现表面银层包覆完整,且具有良好的导电性能.研究了无水乙醇用量、AgNO3用量、AgNO3浓度和反应温度对镀银Fe3O4粉导电性能的影响.结果表明:无水乙醇用量越多越好,AgNO3用量越多越好,AgNO3浓度以0.05mol/L为宜,反应温度以50℃为宜.  相似文献   

19.
含氨基磁性高分子微粒的制备和表征   总被引:1,自引:0,他引:1  
杨旭  李欣  陶长元 《材料导报》2006,20(7):129-131,134
以顺丁烯二酸的二酰氯化合物为酰化剂,将丙二胺部分酰化,以得到的产物N,N'-双(3氨基丙基)顺丁烯二酰胺作为功能基单体,与苯乙烯、二乙烯基苯进行无皂乳液聚合包裹Fe3O4,制备复合磁性高分子.考察了聚合包裹原料的配比、反应时间对实验的影响.用SEM、IR、721E分光光度计和化学滴定法对结果进行表征,得到了稳定性好、磁包裹率达22%、表面氨基携带量为0.24mmol/g的磁性高分子微粒.  相似文献   

20.
Fe_3O_4磁流体制备及磁性能研究   总被引:2,自引:0,他引:2  
采用共沉淀法制备了3种不同粒径的Fe3O4纳米粒子,并分别将其分散在水中制备成磁流体.采用超导量子干涉仪分别测量了不同粒径磁粒子及其磁流体的磁性能.实验结果显示:粉末状Fe3O4粒子的比饱和磁化强度和矫顽力均随粒径的增加而增大;磁流体中的磁粒子比饱和磁化强度也随着粒径的增加而增大,但3种样品的矫顽力均为零,显示出超顺磁性;相同粒径的Fe3O4粒子,在磁流体中的比饱和磁化强度较粉末状态时为低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号