首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
石英纤维增强树脂复合材料常用于多物理场耦合环境下,为保证足够的层间性能,常采用2.5D机织的结构形式。本文对一种浅交弯联2.5D机织石英纤维增强双马树脂复合材料的三维力学性能进行全面测试,对比分析了材料在不同方向的拉伸性能和压缩性能,以及面内、面外剪切性能。测试结果表明,该复合材料的纬向拉伸、压缩模量略高于经向,而拉伸、压缩强度远高于经向,导致经向和纬向拉、压破坏模式差异显著,拉伸时弯曲的经向纤维被拉断,平直的纬向纤维劈裂,压缩时平直的纬向纤维压断,弯曲的经向纤维屈曲。同时,该种材料具有较高的面内、面外剪切变形能力。此外,本文基于混合定律,提出了一个2.5D机织复合材料经、纬向模量估算公式。基于材料微观结构特征,以包含经纱和纬纱的一个单胞作为代表性体积单元,建立有限元模型,预测该2.5D机织复合材料经向模量,预测结果与试验结果吻合很好。本文的研究对2.5D机织石英纤维/双马树脂复合材料的研发具有一定的指导意义。   相似文献   

2.
2.5D机织复合材料压缩性能实验与数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究2.5D机织复合材料的压缩损伤和失效机制,验证双尺度渐进损伤有限元数值模拟方法的有效性,对这类复合材料分别沿经纱方向和纬纱方向进行了准静态压缩实验,获得了其相应的应力-应变曲线,并测定了材料的初始弹性模量和极限强度。在此基础上,利用双尺度渐进损伤有限元数值方法模拟分析了材料的压缩应力-应变响应和损伤演化行为,取得了与实验吻合较好的模拟结果。结果表明:2.5D机织复合材料在纬向压缩下的主要失效模式是纬纱的轴向压溃与断裂,可获得相对较高的压缩强度;但在经向压缩下,经纱因弯曲会承受附加弯矩作用,从而对周围基体造成挤压,故在经纱轴向断裂之前容易出现经纱之间基体的压溃和纱线之间的分层开裂,使强度降低,不利于发挥纤维的承载优势。  相似文献   

3.
考虑界面脱粘表面压应力下摩擦力对材料界面力学性能的影响,建立损伤-摩擦相结合的界面本构模型,编写用户材料子程序VUMAT,实现其在有限元软件ABAQUS中的嵌入。基于周期性胞元分析思想,在单胞模型中纤维束/基体、纤维束/纤维束分界面引入界面单元,结合损伤-摩擦相结合的界面本构模型,建立含界面相三维四向编织复合材料的细观有限元模型。模拟典型载荷下界面损伤的起始和扩展过程,分析界面应力传递和界面破坏机理,研究界面性能对复合材料宏细观力学性能的影响规律,为实现三维四向编织复合材料界面性能优化设计和控制提供参考。   相似文献   

4.
考虑纤维束相互挤压及横截面形状变化, 采用纤维束截面六边形假设, 建立了二维二轴1×1编织复合材料的参数化单胞结构模型。通过引入周期性位移边界条件, 基于细观有限元方法, 对编织材料的弹性性能进行预测, 讨论了编织角及纤维体积含量对面内弹性常数的影响, 并分析了典型载荷下单胞细观应力场分布。研究表明: 单胞结构模型有效反映了纤维束的空间构型和交织特征, 实现了不同编织工艺参数下模型的快速建立; 基于单胞有限元模型的弹性性能预测结果与试验结果较为吻合; 模型给出了单胞合理的应力场分布, 为二维编织复合材料的结构优化和损伤预测奠定基础。   相似文献   

5.
2.5D机织复合材料抗分层、耐冲击,在航空发动机结构上具有巨大的应用前景。本文对一种2.5D机织碳纤维增强双马树脂基复合材料经向和纬向试件,开展了不同名义应力水平下的一阶弯曲共振疲劳试验。试验结果表明:经向试件的振动疲劳性能优于纬向试件,随着应力水平的提高,经向和纬向试件的寿命明显缩短,而固有频率下降百分比增加,试件内部的损伤严重程度和损伤扩展速度都随之提高。2.5D机织复合材料经向和纬向试件在共振疲劳试验过程中的主要失效模式是纱线与基体之间脱粘造成的结构完整性丧失,从而导致试件的刚度持续下降。试件内部损伤的三维电子计算机断层扫描(Computerized tomography,CT)重构图像表明,损伤散布于试件工作段区域,应力水平越高,2.5D机织复合材料经向和纬向试件内部损伤范围越大,损伤程度越高,而且纬向试件内部损伤状态比经向试件严重。利用双对数线性寿命模型,对经向和纬向试件在不同名义应力水平下的共振疲劳试验数据进行拟合,得到2.5D机织复合材料经向和纬向试件共振疲劳应力-寿命(Stress-life,S-N)曲线的数学模型,得到的S-N曲线可用于预测2.5D机织复合材料的寿命。  相似文献   

6.
为准确预测三维角联锁机织复合材料的宏观弹性性能,对基于CT图像几何参数实测数据建立的内单胞和面单胞细观实体模型进行数值分析,其中面单胞模型采用组合面单胞形式,并开展了三维角联锁机织超高分子量聚乙烯(UHMWPE)纤维/聚氨酯复合材料的经向拉伸实验。结果表明:基于两单胞模型预测该复合材料的宏观弹性模量与实验结果吻合较好,组合面单胞的经向拉伸模量小于内单胞;经向拉伸时复合材料在经纱间接触面处、纬纱沿宽度方向的端部和经纱与基体的交界面处易出现应力集中现象;当纬纱层数小于30层时,应该考虑表面区域对复合材料整体力学性能的影响。   相似文献   

7.
基于对三维四向编织陶瓷基复合材料CT扫描结果的观察和理论分析, 参考现有交织模型, 建立了改进的胞元三维实体模型, 较为真实地反映了材料内部的细观结构。模型内部纤维束横截面沿纤维束轴向不断发生形状和面积的周期性变化, 纤维束横截面呈平行四边形、五边形交替变化, 不同纤维束轴线间呈交织关系, 接近材料内部纤维束间打紧后的挤压变形规律。通过测算平均纱线填充因子并配合有限元法获得了纤维束及材料的弹性性能, 与试验结果符合较好。有限元仿真显示在材料单胞内, 纤维束承担主要载荷, 纤维束与基体的某些交界处往往会出现应力集中现象, 可能是发生裂纹扩展及局部破坏的主要区域。该细观应力场的获得也为分析材料破坏机理和强度提供了基础。   相似文献   

8.
针对真空压力浸渗法制备的三维角联锁机织铝基复合材料,采用细观力学有限元模拟与试验结合的方法研究了其面内拉伸变形损伤与断裂力学行为。结果表明:复合材料拉伸应力-应变曲线的计算与试验结果吻合较好,经(纬)向拉伸初始弹性模量、极限强度和断裂应变的计算误差分别为3.96%(1.11%)、1.40%(6.86%)和?5.49%(3.73%);经向拉伸载荷作用下,经纱界面及其邻近基体合金先后发生损伤,随拉伸应变增加损伤累积和交互作用依次引发界面、基体和纬纱失效,变形后期经纱的断裂最终导致复合材料经向拉伸失效;纬向拉伸变形前期,经纱界面和经纬纱之间薄弱的基体合金相继产生损伤和失效现象,经纱在变形中期即出现横向破坏,起主要承载作用的纬纱轴向断裂是纬向拉伸的主要失效机制,由于三维角联锁机织体中纬纱体分远低于经纱,复合材料纬向拉伸模量和强度分别仅为经向的81.8%和56.5%。   相似文献   

9.
基于三维六向编织复合材料的细观结构,假设第六向纱线的截面形状为菱形,建立了三维六向编织复合材料的渐进损伤有限元模型。采用Linde等提出的失效准则,引入周期性位移边界条件,对三维六向编织复合材料的纵向拉伸应力-应变行为进行了渐进损伤数值模拟,讨论了单胞模型在纵向拉伸载荷作用下的细观损伤起始、扩展和最终失效的演化过程,并预测了材料的拉伸强度。在此基础上,进一步研究了编织角、纤维体积分数和编织纱水平取向角等参数对材料纵向拉伸力学性能的影响规律。研究结果表明,三维六向编织复合材料的轴向纱线拉伸断裂是导致其破坏的最主要因素。所得数值结果与现有试验值吻合较好,验证了该模型的有效性,为更深入研究此类材料的力学性能奠定了基础。  相似文献   

10.
圆管状立体机织复合材料的多尺度分析   总被引:1,自引:1,他引:0  
采用多尺度耦合的数值模型研究了圆管状立体机织复合材料的力学性能。建立了反映纤维束中纤维/基体二相材料的微观尺度单胞和反映周期性编织结构的细观尺度扇形单胞,并重点讨论了扇形单胞的周期性边界条件。通过逐级计算微观单胞、细观单胞的平均弹性常数,得到了圆管状立体机织复合材料的刚度参数,实现了由组分材料性能及编织参数预测圆管的宏观弹性性能,模型预测刚度与试验结果吻合。另一方面,研究了从大到小各尺度耦合的应力分析,对于圆管环向应力非周期分布的情况,建立了嵌入细观单胞的环状模型,进行了复杂荷载下从宏观圆管结构、到细观纤维束尺度、再到微观纤维尺度之间的逐级应力分析。  相似文献   

11.
基于细观结构的2.5维机织复合材料强度预测模型   总被引:2,自引:0,他引:2       下载免费PDF全文
采用经纱矩形截面及纬纱六边形截面假设,将经纱的屈曲轨迹简化为折线形式,建立了2.5维机织复合材料单胞几何模型。以单胞为研究对象,引入改进的三维Hashin失效准则和Mises准则作为组分材料的失效判据,采用不同的刚度退化方式来表征不同的失效模式,建立了基于逐渐损伤理论的强度预测模型。利用有限元分析(FEA)技术,开发了相应的参数化2.5维机织复合材料逐渐损伤分析程序,预测了浅交弯联结构不同机织参数2.5维机织复合材料的拉伸强度,并模拟了经向拉伸和纬向拉伸的损伤扩展过程。与静拉伸试验结果相比,拉伸强度的预测误差在10%以内;模拟的失效模式与试验结果吻合较好。  相似文献   

12.
A study is conducted with the aim of developing meso-scale voxel-based model for evaluating the compressive behaviors of warp-reinforced 2.5D woven composites. The real microstructure of warp-reinforced 2.5D woven composites is established. For the validation of this model, a series of axial (warp direction) and transverse (weft direction) compressive tests are conducted. The results show that under axial and transverse compressive loading, the calculated max stress and the final damage morphology agree well with the experimental results. Moreover, it is found that the axial compressive strength is mainly dependent on the high-crimp blinder warp, while the transverse compressive strength is significantly influenced by the warp/weft interlaced regions. It is expected that such a numerical investigation will provide useful information for understanding the strength and failure characteristic of 2.5D woven composites.  相似文献   

13.
电阻法在碳纤维复合材料结构健康监测(SHM)中具有巨大应用前景。本文研究了碳纤维三维角联锁机织复合材料经向和纬向试件在弯曲作用下力-电阻响应,探究电阻变化与复合材料结构损伤的相关性。试验结果表明:经向和纬向试件在弯曲作用下电阻变化与试件主要承载纱线损伤情况具有相关性。准静态三点弯曲加载下,试件电阻变化可以反映试件承载能力变化:在最大载荷点之前,试件电阻基本不变;主要承载纱线发生断裂损伤时,电阻增加。弯曲疲劳加载下,试件电阻变化可以反映试件承载能力退化情况:在弯曲疲劳加载前期,三维角联锁机织复合材料呈现负压阻效应;随着循环次数增加,基体裂纹、界面脱粘等不可逆损伤不断累积,电阻缓慢增大;在弯曲疲劳加载后期,主要承载纱线断裂,电阻显著增加;试件最终疲劳失效时,电阻急剧增加。  相似文献   

14.
Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.  相似文献   

15.
A detailed investigation of the failure mechanisms for angle-interlocked (AI) and modified layer-to-layer (MLL) three dimensional (3D) woven composites under tension–tension (T–T) fatigue loading has been conducted using surface optical microscopy, cross-sectional SEM imaging, and non-destructive X-ray computed tomography (CT). X-ray microCT has revealed how cracks including surface matrix cracks, transverse matrix cracks, fibre/matrix interfacial debonding or delamination develop, and has delineated the complex 3D morphology of these cracks in relation to fibre architecture. For both weaves examined, transverse cracks soon become uniformly distributed in the weft yarns. A higher crack density was found in the AI composite than the MLL composite. Transverse cracking initiates in the fibre rich regions of weft yarns rather than the resin rich regions. Delaminations in the failed MLL specimen were more extensive than the AI specimen. It is suggested that for the MLL composite that debonding between the binder yarns and surrounding material is the predominant damage mechanism.  相似文献   

16.
Unidirectional (UD) woven laminates have complex tow geometry due to unbalanced weave architecture. Warp tows are held together by fine weft. Unit cell models for textile composites found in the literature are based on balanced weaves with identical warp and weft specifications. In this paper, unit cell geometry of unbalanced UD weaves has been considered. Unbalanced laminates have complex tow geometry with in-plane tow waviness and a significant overlap between adjacent tows. Main objective of this work is to measure full-field strain distribution at meso-scale or unit cell level and compare the results with FE analysis. Raman spectroscopy is a powerful technique for in situ strain measurement. A UD woven composite laminate with Kevlar fibres is used in this study, as Kevlar fibres exhibit clear Raman band shifts under strain. Influence of in-plane tow waviness on local strain gradients has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号