首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
针对连续石墨纤维增强铝基(CF/Al)复合材料,采用三种纤维排布方式的代表体积单元(RVE)建立了其细观力学有限元模型,采用准静态拉伸试验与数值模拟结合的方法,研究了其在轴向拉伸载荷下的渐进损伤与断裂力学行为。结果表明,采用基体合金和纤维原位力学性能建立的细观力学有限元模型,对轴向拉伸弹性模量和极限强度的计算结果与实验结果吻合良好,而断裂应变计算值较实验结果偏低。轴向拉伸变形中首先出现界面和基体合金损伤现象,随应变增加界面发生失效并诱发基体合金的局部失效,最后复合材料因纤维发生失效而破坏,从而出现界面脱粘后纤维拔出与基体合金撕裂共存的微观形貌。细观力学有限元分析结果表明,在复合材料制备后纤维性能衰减而强度较低条件下,改变界面强度和刚度对复合材料轴向拉伸弹塑性力学行为的影响较小,复合材料中纤维强度水平是决定该复合材料轴向拉伸力学性能的主要因素。  相似文献   

2.
三维角联锁机织增强复合材料(3DAWCs)具有优异的结构整体性和力学性能。为探究3DAWCs中衬经纱对力学性能的影响,本文设计并制备不同衬经纱占比的3DAWCs,研究不同温度场中不同衬经纱占比3DAWCs的弯曲性能。衬经纱与经纱比例包括:0∶1、1∶1和2∶1。温度场包括:20℃、80℃和150℃。研究结果表明:衬经纱对3DAWCs厚度、纱线形态、载荷-挠度曲线形态、弯曲强度、损伤分布均影响显著;随衬经纱占比增加,3DAWCs的厚度和最大弯曲载荷增加,但1∶1型和2∶1型试样的弯曲强度相差较小;随温度升高,试样弯曲性能下降,但在不同温度场中,不同衬经占比试样的经纬向弯曲性能对温度的敏感性不同。  相似文献   

3.
三维机织陶瓷基复合材料的面内剪切性能及损伤研究   总被引:1,自引:0,他引:1  
采用IOSIPESCU纯剪切试件, 考虑纤维的编织结构和失效机理, 研究了三维机织碳/碳化硅(C/SiC)复合材料在面内剪切载荷作用下的力学性能和损伤过程. 材料具有明显的非线性应力-应变行为和残余变形等特性. 材料主要的损伤机制为基体微裂纹开裂, 界面脱粘和纤维断裂, 其中界面裂纹是材料应力-应变等力学行为的主要影响因素. 基于连续介质损伤力学分析方法, 提出了简单的损伤演化模型并对损伤演化过程进行了描述.  相似文献   

4.
电阻法在碳纤维复合材料结构健康监测(SHM)中具有巨大应用前景。本文研究了碳纤维三维角联锁机织复合材料经向和纬向试件在弯曲作用下力-电阻响应,探究电阻变化与复合材料结构损伤的相关性。试验结果表明:经向和纬向试件在弯曲作用下电阻变化与试件主要承载纱线损伤情况具有相关性。准静态三点弯曲加载下,试件电阻变化可以反映试件承载能力变化:在最大载荷点之前,试件电阻基本不变;主要承载纱线发生断裂损伤时,电阻增加。弯曲疲劳加载下,试件电阻变化可以反映试件承载能力退化情况:在弯曲疲劳加载前期,三维角联锁机织复合材料呈现负压阻效应;随着循环次数增加,基体裂纹、界面脱粘等不可逆损伤不断累积,电阻缓慢增大;在弯曲疲劳加载后期,主要承载纱线断裂,电阻显著增加;试件最终疲劳失效时,电阻急剧增加。  相似文献   

5.
基于三维全五向(Q5D)编织复合材料的细观结构模型,通过引入界面相单元,建立了含界面相Q5D编织复合材料单轴拉伸损伤失效分析模型。应用Python语言实现对ABAQUS的二次开发,将Linde等提出的失效准则和Von-Mises应力准则分别用于纱线和基体的渐进损伤判断,并确定材料的整体失效模式;对于界面相,采用Quads准则进行损伤判断。利用周期性位移边界条件,对含界面相Q5D编织复合材料的纵向拉伸应力-应变行为进行了渐进损伤数值模拟,详细讨论了在纵向拉伸载荷作用下材料的细观损伤起始、扩展和最终失效的演化过程,分析了材料的细观损伤失效机制,预测了材料的极限破坏强度,并研究了界面相性能对材料整体力学行为的影响规律。研究结果表明,数值模拟结果与实验值吻合较好,验证了渐进损伤模型的有效性,为该类材料的力学分析和优化设计奠定了基础。  相似文献   

6.
杨成鹏  贾斐  矫桂琼 《复合材料学报》2019,36(12):2912-2919
基于陶瓷基复合材料在多轴应力作用下的各向异性损伤演化机制,提出损伤解耦分析的模型和方法,实现定量描述损伤分量之间的耦合影响效应。考虑损伤引起的内应力强化,通过引入有效应力的概念,对微细观损伤造成的材料承载性能衰减进行了表征,并提出复杂应力条件下强度失效判别的最大有效应力判据和二次有效应力判据。采用平纹编织C/SiC复合材料,开展了轴向拉伸加卸载、偏轴拉伸加卸载和面内剪切加卸载试验,进行了损伤演化和强度失效分析。模型和试验结果对比分析表明,本文提出的强度理论具有合理性,预测结果准确。   相似文献   

7.
基于三维机织碳/碳复合材料的细观结构特征, 设计平板十字形试样, 在材料双轴力学性能试验机上开展了复合材料单轴、 双轴加载压缩试验, 对比分析了三维机织碳/碳复合材料在双轴压缩载荷下的力学行为。研究表明: 三维机织碳/碳复合材料的压缩行为表现为非线性、 脆性断裂; 双轴载荷作用下非线性特征更为显著, 压缩模量随应力的增加而增大, 强度与模量相较于单轴有较大幅度增加, 双轴压缩载荷作用下材料的强化效应显著; 试样破坏位置并未出现在试样中心区, 而是发生在试样的加载端部或十字形试样的加载分枝根部, 主要表现为基体开裂、 纤维断裂和层间脱粘, 碳布及其层间界面剪切强度的强弱直接影响材料的压缩强度。  相似文献   

8.
基于对三维角联锁结构复合材料真实细观结构的图像分析,建立了几何分析模型,在该模型中假设经纱的横截面呈矩形,纬纱的横截面呈凸透镜形,并运用刚度平均原理,推导出了以角联锁结构复合材料预制件的7个宏观设计参数和纤维、树脂的弹性性能指标为参数变量的弹性性能计算公式,在此基础上编制了能提供三种选择的计算机预测软件,即选择组织结构、力学模型和任意一个偏轴角,从而初步实现了角联锁结构复合材料弹性性能的细观设计.实验结果表明,依据本研究提出的几何分析模型并采用刚度平均理论预测的等效工程弹性常数与实际测得的值之间总体趋势相同,数据基本相符.  相似文献   

9.
采用微机控制电子万能实验机和分离式霍普金森压杆(SHPB)对石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料进行准静态压缩实验和动态冲击实验,研究石墨烯增强铝基复合材料在不同应变率下的冲击力学性能,采用SEM扫描电镜研究石墨烯增强的铝基复合材料和碳化硅增强的铝基复合材料的形貌特征。结果表明:在各个应变率载荷下,添加石墨烯和添加碳化硅都增强了铝合金的屈服强度,其中,添加石墨烯对铝合金的屈服强度提升更加明显,但不影响材料的应变硬化率;相较于在材料中添加碳化硅,添加石墨烯弱化了材料的应变率效应,在高应变率条件下,添加石墨烯降低了材料的强度极限;选取部分实验数据,拟合确定了添加石墨烯和添加碳化硅两种复合材料的J-C和Z-A本构方程的参数,并比较了两种本构模型的预测能力,对于本工作所研究的复合材料,J-C模型的预测能力更好。  相似文献   

10.
短纤维增强铝基复合材料强化机制评述   总被引:1,自引:0,他引:1  
本文对近年来有关短纤维(包括短纤维、晶须及颗粒)增强铝基复合材料强化机制的研究进行了综述,对比了几种强化理论的特点和适用性,同时指出每种强化机制的不足及今后发展方向。  相似文献   

11.
三维编织碳/环氧复合材料力学性能测试及破坏机制   总被引:1,自引:0,他引:1       下载免费PDF全文
通过宏观拉压试验, 研究了三维正交编织碳/环氧复合材料的拉伸和压缩力学性能。对试验过程进行了声发射分析, 对断口进行了扫描电镜观察分析, 给出了该类材料的拉伸和压缩破坏机制。结果表明: 三维正交编织碳/环氧复合材料有良好的拉伸和压缩力学性能; 三维正交编织复合材料在拉伸和压缩载荷作用下的断裂均为脆性断裂, 拉伸试验的主要破坏现象是纤维断裂拔出, 而压缩试验则是纤维剪切破坏; 通过声发射参数分析可以基本判定该类材料损伤过程中的损伤类型。  相似文献   

12.
姚思远  陈秀华 《复合材料学报》2018,35(10):2706-2714
为研究三维机织复合材料在拉伸-压缩循环载荷下的疲劳性能,对材料进行了应力比R=-1的疲劳试验。在不同的载荷水平下,分别进行了纬向和经向两类拉压疲劳试验。试验获得了试样在疲劳载荷下的滞回曲线和全过程中剩余刚度比随寿命的变化曲线。结果表明,在拉伸-压缩循环载荷下,三维机织复合材料的疲劳损伤过程主要包含3个阶段,分别发生基体破坏、纱线横向裂纹扩展和纱线的最终断裂。基体的破碎和开胶、垂直于载荷方向排布的纱线撕裂和沿载荷方向排布的纱线断裂是试样内部的主要失效模式。试验还获得了纬向和经向拉压疲劳的拟合S-N曲线,可应用于工程中对该型材料进行疲劳寿命估算。该型材料的疲劳寿命在低应力区和高应力区均显示出较小的分散性,双对数坐标系下的拟合S-N曲线具有较好的线性度。  相似文献   

13.
《Composites Part A》2003,34(7):561-575
Much less research has been done on failure characteristics of composites under transverse shear, especially for 3D textile composites. This work is an attempt to this need. General characteristics of 3D composites related to the present study are first discussed. Three types of 3D woven carbon/epoxy composites were made with identical internal yarn structures but different external loop patterns. For comparison purposes, a unidirectional carbon/epoxy composite with the same numbers of axial fibers and a monolithic epoxy material were also made to reveal the role of transverse yarns in resisting the shear. To apply the transverse shear, a special fixture was used to clamp and cut the specimen using two cutters. With the fixture, no notch on the specimen is needed, and thus the interlacing loops on the surface remain intact before the test. The gap between the cutters was varied to examine its influence on the failure behavior. Damage in fibers is most intensive within the cutting zone. Microscopic observations on the induced damage were carried out. Two failure modes in axial yarns are prevailing: shear fracture and tensile rupture. Matrix cracking leading to the loss of the shear rigidity is responsible for the tensile rupture of the axial yarns. The transverse shear resulted in complex but intriguing damage modes. The loop pattern, gap length, and cutting position are the crucial influencing factors to the damage modes, maximum load, and the maximum shear displacement to failure.  相似文献   

14.
The mode II interlaminar fracture behavior and the toughening mechanism of Zanchor reinforced composite laminates were investigated by using the End Notched Flexure (ENF) and Interlaminar Shear (ILS) specimens. The ENF test results demonstrated that the Zanchor process was highly effective to improve the mode II fracture toughness of composite laminates, where the fracture toughness increased almost linearly with the Zanchor density. The R-curves of Zanchor composites were roughly divided into the transition and stable regions, where the width of the transition region became larger as the Zanchor density increased. The macroscopic fracture behavior of the Zanchor composites was still brittle under mode II loading like that of the base composite, where the crack tip process zone was estimated to be rather small regardless of the Zanchor density. The ILS test results demonstrated that the square of the normalized shear strength increased linearly with the Zanchor density and agreed quantitatively with the normalized fracture toughness. The wedge effect was supposed to be the dominant toughening mechanism against the mode II fracture, where the entangled fiber bundles partly sustained the shear stress in the vicinity of the crack tip. The entangled fiber bundles played an important role to form the mode II fracture surface, where the microscopic fracture pattern of the entangled fiber bundles was mainly the breakage of the fiber bundles rather than the pull-out or debonding of the fiber bundles.  相似文献   

15.
Titanium matrix composites continuously reinforced by silicon carbide fibres are considered as key technology for a new generation of aero engines. High specific strength and stiffness promise significant weight savings and performance improvements. Impact loading may be one critical aspect in the design of rotating compressor components with titanium matrix composites. On the other hand the strength increases at high strain rates. Considering this additional loading capability enables a design closer to the edge. Therefore, the strength to strain rate relation needs to be examined. This paper presents results of high strain rate tests at the fly wheel device. Loadings resulting in strain rates from quasistatic loading to 740 1/s were applied. The results are discussed and the mechanism of energy consumption was investigated by determination of the plastic deformed length by scanning electron microscopy.  相似文献   

16.
采用压制-烧结-热挤压工艺制备石墨烯纳米片(GNFs)增强铝基(Al)复合材料,并对其进行压缩性能测试。结果表明:GNFs/Al复合材料是应变率敏感材料,当应变率从10-3s-1提高至3×10~3s-1时,复合材料的强度明显提高;而当应变率继续提高至5×10~3s-1时,由于材料内部发生热软化,复合材料的强度反而表现出少许下降。动态压缩后复合材料中铝基体发生动态再结晶,且应变率越高,动态再结晶越显著;增强相GNFs则发生扭曲变形后仍保持完整结构且与基体间保持原子间结合。因此,GNFs/Al复合材料具有良好的动态压缩塑性。  相似文献   

17.
碳化硅增强铝基复合材料的力学性能和断裂机制   总被引:1,自引:0,他引:1  
研究了碳化硅颗粒(SiCp)尺寸对用粉末冶金法制备体积分数为15%的SiCp/2009铝基复合材料力学性能和断裂机制的影响.结果表明,复合材料的强度随着SiCp尺寸的增大而减小,塑性则随着颗粒的增大而增大.当SiCp尺寸为1.5μm时,SiCp/2009A1复合材料的断裂主要以界面处撕裂和基体材料的开裂为主;当SiCp尺寸为20 μm时,复合材料的断裂主要以SiCp断裂为主;当SiCp尺寸处于两者之间时,SiCp/2009A1复合材料界面处撕裂和SiCp断裂的共同作用决定复合材料的断裂.  相似文献   

18.
An experimental study of the in-plane tension-tension fatigue behavior of the carbon fiber/epoxy matrix composite reinforced with non-crimp 3D orthogonal woven fabric is presented. The results include pre-fatigue quasi-static test data, fatigue life diagrams, fatigue damage progression, and post-fatigue quasi-static test data for the warp- and fill-directional loading cases. It is revealed that the maximum cycle stress corresponding to at least 3 million cycles of fatigue life without failure, is in the range of 412-450 MPa for both loading directions. This stress range is well above the static damage initiation threshold and significantly above the first static damage threshold (determined by the onset of low energy acoustic emission). The second static damage threshold, determined by the onset of high energy acoustic emission and related to the appearance of local debonds and intensive transverse matrix cracking falls within this range. The established correlation between a 3000,000 cycle fatigue stress limit on one side and the second static damage threshold stress on the other is of a high practical importance, because it will significantly reduce the amount of future fatigue tests required for this class of composites. Surprisingly, for equal maximum cycle stress level, the fatigue life under fill-directional loading appears about three times shorter than that under warp-directional loading. The 100,000 cycle, 500,000 cycle and 1000,000 cycle fatigue loading with 450 MPa maximum cycle stress has resulted in so high variations of post-fatigue static modulus, strength and ultimate strain, that no consistent and statistically meaningful trends could have been established; further extensive experimental studies are required to reliably quantify this effect.  相似文献   

19.
Experimental investigations have been made on the quasi-static mechanical behavior and failure modes of aluminum/bamboo sandwich plates. Thermosetting epoxy resin and thermoplastic Polybond resin were used to bond the aluminum sheets and the bamboo. Tensile, compressive and flexural properties were evaluated. The effects of bond conditions on the mechanical behavior and failure modes were examined. The thermoplastic Polybond resin resulted in a stronger interface bond than the thermosetting epoxy resin. The improvement of the interface bond led to significant increases in compressive and flexural properties. The tensile properties were found to be insensitive to the interface bond. The dominant failure mechanisms affected by the interface bond dictated the mechanical properties of the sandwich plates in individual loading conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号