首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
We provide new sufficient convergence conditions for the semilocal convergence of Ulm’s method (Izv. Akad. Nauk Est. SSR 16:403–411, 1967) in order to approximate a locally unique solution of an equation in a Banach space setting. We show that in some cases, our hypotheses hold true but the corresponding ones (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) do not. We also show that under the same hypotheses and computational cost as (Burmeister in Z. Angew. Math. Mech. 52:101–110, 1972; Kornstaedt in Aequ. Math. 13:21–45, 1975; Petzeltova in Comment. Math. Univ. Carol. 21:719–725, 1980; Potra and Ptǎk in Cas. Pest. Mat. 108:333–341, 1983; Ulm in Izv. Akad. Nauk Est. SSR 16:403–411, 1967) finer error sequences can be obtained. Numerical examples are also provided further validating the results.  相似文献   

2.
We present new sufficient conditions for the semilocal convergence of Newton’s method to a locally unique solution of an equation in a Banach space setting. Upper bounds on the limit points of majorizing sequences are also given. Numerical examples are provided, where our new results compare favorably to earlier ones such as Argyros (J Math Anal Appl 298:374–397, 2004), Argyros and Hilout (J Comput Appl Math 234:2993-3006, 2010, 2011), Ortega and Rheinboldt (1970) and Potra and Pták (1984).  相似文献   

3.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

4.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

5.
In this paper, two kinds of parametric generalized vector equilibrium problems in normed spaces are studied. The sufficient conditions for the continuity of the solution mappings to the two kinds of parametric generalized vector equilibrium problems are established under suitable conditions. The results presented in this paper extend and improve some main results in Chen and Gong (Pac J Optim 3:511–520, 2010), Chen and Li (Pac J Optim 6:141–152, 2010), Chen et al. (J Glob Optim 45:309–318, 2009), Cheng and Zhu (J Glob Optim 32:543–550, 2005), Gong (J Optim Theory Appl 139:35–46, 2008), Li and Fang (J Optim Theory Appl 147:507–515, 2010), Li et al. (Bull Aust Math Soc 81:85–95, 2010) and Peng et al. (J Optim Theory Appl 152(1):256–264, 2011).  相似文献   

6.
We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61–97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy–Boussinesq equations, which is a degenerate version of the Navier–Stokes–Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge–Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375–417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141–1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131–151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20–31, 1991, Arch. Ration. Mech. Anal. 185:341–363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450–1461, 1998; Loeper in SIAM J. Math. Anal. 38:795–823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov–Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29–59, 2001) and of the Keller–Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225–234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819–824, 1992; Chalub et al. in Mon. Math. 142:123–141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier–Stokes–Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359–378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier–Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179–184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127–150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139–154, 2007).  相似文献   

7.
In the previous work (Zhang and Zhu in J Differ Geom, http://arxiv.org/pdf/1012.4233v3, 2012), the second and third authors established a Bochner type formula on Alexandrov spaces. The purpose of this paper is to give some applications of the Bochner type formula. Firstly, we extend the sharp lower bound estimates of spectral gap, due to Chen and Wang (Sci Sin (A) 37:1–14, 1994), Chen and Wang (Sci Sin (A) 40:384–394, 1997) and Bakry–Qian (Adv Math 155:98–153, 2000), from smooth Riemannian manifolds to Alexandrov spaces. As an application, we get an Obata type theorem for Alexandrov spaces. Secondly, we obtain (sharp) Li–Yau’s estimate for positve solutions of heat equations on Alexandrov spaces.  相似文献   

8.
Let S be a Damek–Ricci space and L be a distinguished left invariant Laplacian on S. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form ${\rm {e}}^{it\sqrt{ L}}\psi\big(\sqrt{ L}/{\lambda}\big)$ for arbitrary time t and arbitrary λ>0, where ψ is a smooth bump function supported in [?2,2] if λ<1 and supported in [1,2] if λ≥1. This generalizes previous results in Müller and Thiele (Studia Math. 179:117–148, 2007). We also prove pointwise estimates for the gradient of these convolution kernels. As a corollary, we reprove basic multiplier estimates from Hebish and Steger (Math. Z. 245:37–61, 2003) and Vallarino (J. Lie Theory 17:163–189, 2007) and derive Sobolev estimates for the solutions to the wave equation associated to L.  相似文献   

9.
Let (M n , g) be an n-dimensional complete Riemannian manifold. We consider gradient estimates for the positive solutions to the following nonlinear parabolic equation: $$u_t=\Delta u+au\log u+bu$$ on M n  × [0,T], where a, b are two real constants. We derive local gradient estimates of the Li-Yau type for positive solutions of the above equations on Riemannian manifolds with Ricci curvature bounded from below. As applications, several parabolic Harnack inequalities are obtained. In particular, our results extend the ones of Davies in Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol 92, Cambridge University Press, Cambridge,1989, and Li and Xu in Adv Math 226:4456–4491 (2011).  相似文献   

10.
11.
We study the small deviation probabilities of a family of very smooth self-similar Gaussian processes. The canonical process from the family has the same scaling property as standard Brownian motion and plays an important role in the study of zeros of random polynomials. Our estimates are based on the entropy method, discovered in Kuelbs and Li (J. Funct. Anal. 116:133–157, 1993) and developed further in Li and Linde (Ann. Probab. 27:1556–1578, 1999), Gao (Bull. Lond. Math. Soc. 36:460–468, 2004), and Aurzada et al. (Teor. Veroâtn. Ee Primen. 53:788–798, 2009). While there are several ways to obtain the result with respect to the L 2-norm, the main contribution of this paper concerns the result with respect to the supremum norm. In this connection, we develop a tool that allows translating upper estimates for the entropy of an operator mapping into L 2[0,1] by those of the operator mapping into C[0,1], if the image of the operator is in fact a Hölder space. The results are further applied to the entropy of function classes, generalizing results of Gao et al. (Proc. Am. Math. Soc. 138:4331–4344, 2010).  相似文献   

12.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

13.
We present the solution of a large class of homogeneous linear functional equations of higher order by using ideas from dynamical systems. A particularly simple example from this class is the functional equation $$f(x) = \frac{1}{2}f \left(\frac{x}{2}\right) + \frac{1}{2}f \left(\frac{x+1}{2}\right), \quad 0 < x < 1.$$ Equations such as these have found important applications in wavelet theory by Hilberdink (Aequa Math 61(1–2):179–189, 2001) where they are called dilation equations and are usually solved by Fourier methods by Daubechies (Comm Pure Appl Math 41(7):909–996, 1988) or iteration methods of Daubechies (SIAM J Math Anal 22(5):1388–1410, 1991). A recent result of Góra (Ergod Theory Dyn Syst 29(5):1549–1583, 2009) allows us to represent the solution as an infinite series that is determined by the dynamics of a map that is defined by the functional equation. In this problem the interplay between dynamical systems and solutions of functional equations is brought into sharp focus.  相似文献   

14.
The multivariate generalized Marshall–Olkin distributions, which include the multivariate Marshall–Olkin exponential distribution due to Marshall and Olkin (J Am Stat Assoc 62:30–41, 1967) and multivariate Marshall–Olkin type distribution due to Muliere and Scarsini (Ann Inst Stat Math 39:429–441, 1987) as special cases, are studied in this paper. We derive the survival copula and the upper/lower orthant dependence coefficient, build the order of these survival copulas, and investigate the evolution of dependence of the residual life with respect to age. The main conclusions developed here are both nice extensions of the main results in Li (Commun Stat Theory Methods 37:1721–1733, 2008a, Methodol Comput Appl Probab 10:39–54, 2008b) and high dimensional generalizations of some results on the bivariate generalized Marshall–Olkin distributions in Li and Pellerey (J Multivar Anal 102:1399–1409, 2011).  相似文献   

15.
By a variant of the techniques introduced by the first two authors in De Philippis and Figalli (Invent Math 2012) to prove that second derivatives of solutions to the Monge–Ampère equation are locally in $L\log L$ , we obtain interior $W^{2,1+\varepsilon }$ estimates.  相似文献   

16.
We present a local as well as a semilocal convergence analysis for Newton’s method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. Our hypotheses involve m-Fréchet-differentiable operators and general Lipschitz-type hypotheses, where m≥2 is a positive integer. The new convergence analysis unifies earlier results; it is more flexible and provides a finer convergence analysis than in earlier studies such as Argyros in J. Comput. Appl. Math. 131:149–159, 2001, Argyros and Hilout in J. Appl. Math. Comput. 29:391–400, 2009, Argyros and Hilout in J. Complex. 28:364–387, 2012, Argyros et al. Numerical Methods for Equations and Its Applications, CRC Press/Taylor & Francis, New York, 2012, Gutiérrez in J. Comput. Appl. Math. 79:131–145, 1997, Ren and Argyros in Appl. Math. Comput. 217:612–621, 2010, Traub and Wozniakowski in J. Assoc. Comput. Mech. 26:250–258, 1979. Numerical examples are presented further validating the theoretical results.  相似文献   

17.
In this paper, we investigate the properties of mappings in harmonic Bergman spaces. First, we discuss the coefficient estimate, the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit disk $\mathbb D $ of $\mathbb C $ . Our results are generalizations of the corresponding ones in Chen et al. (Proc Am Math Soc 128:3231–3240, 2000), Chen et al. (J Math Anal Appl 373:102–110, 2011), Chen et al. (Ann Acad Sci Fenn Math 36:567–576, 2011). Then, we study the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit ball $\mathbb B ^{n}$ of $\mathbb C ^{n}$ . The obtained results are generalizations of the corresponding ones in Chen and Gauthier (Proc Am Math Soc 139:583–595 2011). At last, we get a characterization for mappings in harmonic Bergman spaces on $\mathbb B ^{n}$ in terms of their complex gradients.  相似文献   

18.
Using the level set method of Joó (Acta Math Hung 54(1–2):163–172, 1989), a general two-function topological minimax theorem are proved. The theorem improves and generalizes the known results shown by Cheng and Lin (Acta Math Hung 73(1–2):65–69, 1996), Lin and Cheng (Acta Math Hung 100(3):177–186, 2003), and Frenk and Kassay (Math Program Ser A 105(1):145–155, 2006).  相似文献   

19.
The method (Martynyuk and Pivovarchik, Inverse Probl. 26(3):035011, 2010) of recovering the potential of the Sturm–Liouville equation on a half of the interval by the spectrum of a boundary value problem and by the restriction of the potential onto the other half of the interval is used for treating the missing eigenvalue problem (Trans. Am. Math. Soc. 352:2765–3789, 2000, J. R. Astr. Soc. 62:41–48, 1980, J. Math. Pures Appl. 91:468–475, 2009, J. Math. Soc. Japan 38:39–65, 1986). The latter arises in the case of the half-inverse (Hochstadt–Lieberman) problem with Robin boundary conditions and lies in the fact that in many cases all the eigenvalues but one are needed to recover the potential and the Robin condition at one of the ends.  相似文献   

20.
Northcott’s book Finite Free Resolutions (1976), as well as the paper (J. Reine Angew. Math. 262/263:205–219, 1973), present some key results of Buchsbaum and Eisenbud (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974) both in a simplified way and without Noetherian hypotheses, using the notion of latent nonzero divisor introduced by Hochster. The goal of this paper is to simplify further the proofs of these results, which become now elementary in a logical sense (no use of prime ideals, or minimal prime ideals) and, we hope, more perspicuous. Some formulations are new and more general than in the references (J. Algebra 25:259–268, 1973; Adv. Math. 12: 84–139, 1974; Finite Free Resolutions 1976) (Theorem 7.2, Lemma 8.2 and Corollary 8.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号