首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a new A‐shaped dielectric resonator antenna (DRA) excited by a conformal strip is proposed for wideband applications. The wide bandwidth is achieved by combining two adjacent modes that is, TM101 and TM103. The experimental results demonstrate that the proposed DRA offers an impedance bandwidth (for S11?10 dB) of 59.7% (3.24‐6.0 GHz), covering IEEE 802.11 and U‐NII bands. The antenna provides a fairly stable radiation pattern with the gain ranging from 5.29 to 7 dBi across the operating bandwidth. A dual‐element multiple‐input multiple‐output (MIMO) system is also realized using the proposed wideband DRA. The impedance bandwidth of the dual‐element MIMO antenna is 59.2% and 60.9% for Port1 and Port2, respectively and the isolation between the ports is better than 20 dB across the bandwidth. For Port1, the gain of the MIMO antenna ranging from 6.03 to 7.45 dBi is obtained across the bandwidth. Furthermore, the diversity performance of the MIMO antenna is found to be good with envelope correlation coefficient below 0.003 over the operating band. The proposed antenna could be the potential candidate for worldwide interoperability for microwave access (WiMAX), wireless local area network (WLAN) and lower European UWB frequency band (3.4‐5.0 GHz) applications.  相似文献   

2.
In this article, a new radiating stub microstrip feed has been investigated with asymmetrical ground plane for generation of circular polarization (CP) in a dielectric resonator antenna (DRA). Here, asymmetrical ground plane and 3 radiating stubs with microstrip feed line are used for generation of 2 different modes namely TE11δ and TE12δ in rectangular DRA. By using mode matching concepts, these modes are responsible for enhancing the impedance bandwidth (TE12δ ie, and ) and axial ratio (AR) bandwidth (TE11δ ie, and ) in proposed antenna. Designed antenna offers measured input impedance bandwidth (|S11| < ?10 dB) and AR bandwidth (AR < 3‐dB) of 44.78%, ranging from 4.6 to 6.9 GHz and 23.32%, ranging from 4.6 to 6.9 GHz, respectively. It has been observed that proposed antenna shows left‐handed CP fields in boresight direction with average gain of 3.15 dBic and radiation efficiency of 90.54%. Designed antenna is suitable for Wi‐MAX (3.3‐3.7 GHz) applications.  相似文献   

3.
In this article, a dual port aperture coupled MIMO cylindrical dielectric resonator antenna with enhanced isolation is proposed. Dual feeding techniques are used to excite dielectric resonator. These feeding structures are oriented in such a way so that they can produce orthogonal mode in the dielectric resonator. High isolation is observed by generating two orthogonal modes, that is, and in the dielectric resonator. The fractional bandwidth for port 1 and port 2 is 17.8% (3.1‐3.68 GHz) and 18.4% (3.1‐3.7 GHz), respectively, and isolation between the two ports exceeds ?25 dB within the required band. The proposed antenna is simulated, fabricated, and experimentally tested. Good agreements between measured and simulated results are observed. The various diversity performance parameters are also lie within their acceptable limits. Based on presented results, it can be concluded that the presented MIMO antenna is suitable for WiMAX (3.3‐3.6 GHz) applications.  相似文献   

4.
This article proposes a compact multiple‐input multiple‐output (MIMO) antenna with the electromagnetic band gap (EBG) structures for mobile terminals. The proposed MIMO antenna is composed of two radiation patches in which diagonal and folded microstrip lines are utilized to control the frequency bands. The radiation patch, one EBG structure and a rectangular‐shaped ground plane are etched on both sides of the antenna. The EBG structures have been employed for reducing the mutual coupling between the antenna elements. As a result of the effect of these structures, the mutual coupling between the two elements is reduced by less than ?30 dB. The proposed antenna is implemented on an FR4 substrate with dimensions 20 × 10 × 1 mm3. According to measured results, frequency ranges of 2.2 to 3.6 GHz and 5.1 to 5.9 GHz with S11 < ?10 dB and also 3.7 to 5 GHz and 8 to 12 GHz with S22 < ?10 dB have been obtained. Moreover, measured S12 and S21 with values of less than ?30 dB for both Ports have been realized. Additionally, the envelope correlation and radiation efficiency of the purposed antenna are less than 0.09 and more than 82%, respectively.  相似文献   

5.
A dual‐port reduced size multiple input multiple output (MIMO) Dielectric Resonator Antenna (DRA) has been studied and proposed. The MIMO antenna consists of a Rectangular Dielectric Resonator antenna, which is fed by two symmetrical feed lines for orthogonal mode excitation. The proposed antenna is suitable for operation over various long term evolution (LTE) bands. A measured bandwidth of 264 MHz for |S11| S‐parameters. Based on these results, it can be concluded that the proposed antenna can be a suitable candidate for MIMO applications. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:495–501, 2015.  相似文献   

6.
A novel structure combined of an I‐shaped microstrip line and eight slots etched from the ground plane is proposed to decouple both E‐plane and H‐plane antenna arrays. Five types of antenna arrays at 5.25 GHz with different linear placements are discussed for the first time and the decoupling structure is valid to them all. The edge‐to‐edge distances of the H‐plane arrays and the E‐plane arrays are 0.09 and 0.17 , respectively. Simulated and measured results indicate that the combined structure can effectively reduce the mutual coupling, with the maximum values reaching to 22.62, 28.41, 21.04, 22.33, and 26.04 dB for five types, respectively. The proposed structure is potential in the application of multielement arrays and communication MIMO system.  相似文献   

7.
A compact two‐element multiple‐input‐multiple‐output (MIMO) antenna system with improved impedance matching and isolation is presented for future sub‐6 GHz 5G applications. The two identical tapered microstrip line fed modified rhombus‐shaped radiating elements are placed in the same orientation at a compact substrate area of 0.24λ0 × 0.42λ0 (where, λ0 at 3.6 GHz) on a shared rectangular ground. A remodeled T‐shaped ground stub is placed between a pair of radiating element to achieve improved impedance bandwidth and isolation. Further, a split U‐shaped stub connected to center of each radiating element to achieve the desired resonant frequency of 3.6 GHz. The proposed antenna covers a ?10 dB operating band of 3.34 to 3.87 GHz (530 MHz) with more than 20 dB isolation between a pair of elements. MIMO performances are also analyzed and experimentally validated. The measured performances of a prototype are found in good agreement with simulated performances. Further, the simulation study is carried out to see the effect of housing and extended ground plane on two‐element MIMO antenna for practical application. An idea of realization of 12‐element MIMO is also studied using the proposed two‐element MIMO antenna.  相似文献   

8.
A new compact three‐dimensional multiple‐input‐multiple‐output (MIMO) antenna comprised of eight antenna elements is presented. The unit cell of the proposed MIMO/diversity antenna consists of three elliptical rings connected together in the region close to the feed line and a rectangular‐shaped modified ground plane. To achieve polarization diversity with the proposed eight‐port MIMO configuration, four antenna elements are horizontally arranged and the remaining four are vertically oriented. The proposed antenna has an impedance bandwidth (S11 < ?10 dB) of 25.68 GHz (3.1‐28.78 GHz) with a wireless local area network notch‐band at 5.8 GHz (5.2‐6.5 GHz). In addition to polarization diversity, the proposed antenna provides a reliable link with wireless devices. The prototype antenna design is fabricated and measured for diversity performance. Also, the proposed MIMO antenna provides good performance metrics such as apparent diversity gain, channel capacity loss, envelope correlation coefficient, isolation, mean effective gain, multiplexing efficiency, and total active reflection coefficient.  相似文献   

9.
A low profile triband compact multiple input multiple output (MIMO) antenna operating at WLAN, WiMAX, and HIPERLAN bands is presented. The proposed MIMO antenna consists of two planar inverted‐F antenna elements located at the top two corners of printed circuit board (PCB). Dimensions of each antenna elements are reduced substantially by employing a meandered line and folded patch structure so that it occupies a small volume of 9 × 8.8 × 5.4 mm3. The proposed antenna consists of three arms namely, Main arm, Side arm 1, and Side arm 2. Each individual arm resonates corresponding to the λ/4 electrical length. Characterization of the antenna is carried out in the mobile environment as well as in user proximity. In the presence of mobile environment which includes liquid crystal display (LCD), Battery, RF components, and plastic housing, the isolation as well as reflection coefficient parameters deteriorated. To avoid the aggravation of S‐parameters, two nonradiating folded shorting strips are connected between each antenna element and ground plane of PCB. This folded shorting strip not only improves the isolation between ports but also prevent the deterioration of reflection coefficient parameter. The total efficiency, envelope correlation coefficient, and multiplexing efficiency are studied in the user proximity. The optimized structure is fabricated and measured. The measured S‐parameters cover WLAN (2.46–2.6 GHz), WiMAX (3.37–3.75 GHz), and HIPERLAN (5.2–5.87 GHz) based on ?10 dB reflection coefficient and ?24 dB isolation is achieved between antenna ports. Good agreement is obtained between the simulated and measured results. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:510–521, 2015.  相似文献   

10.
A compact ultra‐wideband multiple‐input multiple‐output (UWB‐MIMO) antenna with good isolation and multiple band‐notch abilities is developed in this work. It consists of two quadrant shaped monopole antennas backed by ground stubs. A good isolation is achieved due to the two proposed extended curved ground stubs. The frequency rejection for the WLAN system is realized by loading a capacitive loaded loop resonator adjacent to the feed line. The band rejection for the WiMAX and LTE band43 system is achieved by embedding a quadrant shaped CSRR on each radiator's surface. The measured bandwidth of the antenna is 3.06 GHz‐11 GHz (|S11| < ?10 dB and |S21| < ?18 dB) with a band rejection from 3.5 GHz‐4 GHz to 5.1 GHz‐5.85 GHz, respectively. Time domain performances are investigated in terms of group and phase delay characteristics. Diversity characteristics are evaluated in terms of the envelope correlation coefficient, mean effective gain, and channel capacity loss.  相似文献   

11.
This article proposes a multiple input multiple output (MIMO) antenna for 5G‐based vehicular communication applications. The designed MIMO antenna consist of two element iterated T‐shape antenna with defected ground structure (DGS) and split ring resonator. The antenna providing reflection coefficient S11 s11 ≤10 dB and bandwidth of 6.3 and 3.96 GHz over the frequency range of 26.83 to 33.13 GHz and 34.17 to 38.13 GHz, respectively. For the suitable future vehicular millimetric wave communications, this antenna achieved resonant frequencies at 28, 33, and 37 GHz. The designed antenna has achieved peak gain of 7.11 dB in operating band. It is fabricated on 12 x 25.4 x 0.8 mm3 Rogers RT duroid 5880 substrate with dielectric constant (εr) of 2.2. The antenna is placed on vehicle in virtual environmental using ANSYS SAVANT tool and the simulated results are showing good matching with the measured results of proposed MIMO antenna.  相似文献   

12.
In this article, a new compact eight‐element three‐dimensional (3D) design of ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is proposed. For realizing polarization diversity, four elements of the MIMO antenna are oriented horizontally and four elements are arranged vertically. In the horizontal arrangement, the antenna resonating elements are placed orthogonally to each other, which reduces interelement coupling and offers a consistent link with the wireless systems/devices. The proposed antenna shows a bandwidth (S11 ≤ ?10 dB) of 17.99 GHz (2.83‐20.82 GHz) and isolation larger than 15 dB in the resonating band. The proposed MIMO/diversity antenna performance parameters such as envelope correlation coefficient, diversity gain, and total active reflection coefficient are evaluated and presented. Furthermore, the unit cell of the MIMO system is simulated for the packaged environment and it is observed that the antenna housing does not affect the antenna performance.  相似文献   

13.
In this article, a circularly polarized rectangular dielectric resonator antenna fed by a cross‐aperture coupled spiral microstrip line is investigated. A quarter wavelength section of microstrip line is positioned between each arm of the cross slot in a spiral form to generate the circular polarization. The prototype of proposed antenna is fabricated and tested. The measured |S11| and 3‐dB axial ratio frequency range is 31.74%, (2.65–3.65) GHz and 20%, (3.12–3.74) GHz, respectively and the measured total gain and left handed circularly polarized gain are 4.5 and 3.1 dB, respectively. The proposed antenna may be suitable for WiMAX applications.  相似文献   

14.
In this article, a coaxial probe fed wideband circularly polarized antenna has been designed and investigated using unequal and adjacent‐slided rectangular dielectric resonators radiating in broadside direction (Φ = 0°, θ = 0°). Wi‐Fi wireless network use radio signal either in 2.4 or 5 GHz band. Owing to high rush in 2.4 GHz band, the proposed antenna is designed for 5 GHz (5.15‐5.825 GHz) WLAN band. The proposed design uses fundamental orthogonal modes and excited in two individual rectangular dielectric resonators to achieve wide axial‐ratio bandwidth (below 3 dB). Measured input reflection coefficient (below ?10 dB) and axial ratio bandwidth (below 3 dB) of 26.07% (5.27‐6.85 GHz) and 26.85% (5.32‐6.97 GHz) has been attained, respectively, in this proposed antenna. The measured far‐field patterns such as gain and radiation patterns are showing consistent performance throughout the working band.  相似文献   

15.
A novel dual‐band MIMO dielectric resonator antenna with high port isolation for WiMAX and WLAN applications is designed and investigated. The proposed antenna operates at 3.5 and 5.25 GHz bands. High port isolation is achieved using hybrid feeding mechanism that excites two orthogonal modes at each frequency bands. The measured impedance bandwidth of the proposed antenna covers the entire WiMAX (3.4–3.7) GHz and WLAN (5.15–5.35) GHz bands. The scalable behavior along with the frequency ratio of the antenna has also been investigated in this work. The measured isolation between antenna ports is ?52 dB at the lower band and ?46 dB at the upper band, respectively. Envelope correlation coefficient, diversity gain and mean effective gain have also been investigated. Moreover, measured results are in good agreement with the simulated ones.  相似文献   

16.
A method to significantly increase the gain and reduce the mutual coupling of microstrip multiple‐intput multiple‐output (MIMO) antenna based on metamaterial concept is presented. The μ‐negative and ε‐negative features of the proposed modified peace‐logo planar metamaterial (MPLPM) and two‐sided MPLPM (TSMPLPM) structures are calculated. The antenna structure consists of eight MPLPM slabs and two TSMPLPM, which are embedded in azimuth plane of a MIMO antenna vertically. The dimensions of MIMO antenna are 28 × 16 × 6.3 mm3 at 40 GHz. As a result, a compact MIMO antenna is simulated in comparison with primary microstrip structures. The corresponding return‐loss of the antenna is better than 10 dB over 34.5 to 45.5 GHz for Ka‐band applications. Good consent between the measured and simulated result is tacked. The maximum simulated gain of the structure is 15.5 dB at 40 GHz, creating a maximum gain improvement of 11.5 dB in comparison with a MIMO antenna without any metamaterial combinations. The value of the insertion‐loss (isolation) is 33 dB, which has improved by more than 25 dB compared to the conventional sample.  相似文献   

17.
A novel compact self‐similar fractal ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is presented. This fractal geometry is designed by using iterated function system (IFS). Self‐similar fractal geometry is used here to achieve miniaturization and wideband performance. The self‐similarity dimension of proposed fractal geometry is 1.79, which is a fractional dimension. The antenna consists of two novel self‐similar fractal monopole‐antenna elements and their metallic area is minimized by 29.68% at second iteration. A ground stub of T‐shape with vertical slot enhances isolation and impedance bandwidth of proposed MIMO antenna. This antenna has a compact dimension of 24 × 32 mm2 and impedance bandwidth (S11 < ?10 dB) of 9.4 GHz ranging from 3.1 to 12.5 GHz with an isolation better than 16 dB. The various diversity performance parameters are also determined. There is good agreement between measured and simulated results, which confirms that the proposed antenna is acceptable for UWB applications.  相似文献   

18.
A novel wideband microstrip bandpass filter (BPF) based on a coupled‐stub loaded resonator (CSLR) is presented in this article. The CSLR is constructed by attaching one short‐circuited parallel coupled microstrip line (PCML) in shunt to a high impedance microstrip line. The filter bandwidth can be conveniently controlled via reasonable adjusting of the impedance of PCML. Moreover, new defected microstrip structures (DMSs) introduced in the PCML functions as a means of adjusting the positions of transmission zeros, created by the PCML. The resonant mode and transmission zero chart are given, indicating that the higher modes could be suppressed by the transmission zeros. Finally, to validate the proposed method, two wideband BPF filters with and without DMSs centered at 3 GHz with 3 dB fractional bandwidth of 87% are designed and fabricated. The measured results show that both the return losses are better than 15.8 dB, while the BPF with DMSs has a ?19.4 dB isolation wideband from 1.57 to 4.23 . The measured results are in excellent agreement with full‐wave electromagnetic simulation results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:122–128, 2015.  相似文献   

19.
A miniature two‐element MIMO multiband planar patch antenna with potential applications in the ISM bands is presented. The elements of the antenna have been designed using a novel hybrid fractal geometry based on an altered Dragon Curve and the Inverted Koch. Reduced antenna dimensions are obtained with acceptable performance even at lower frequency ranges. The antenna elements are placed adjacent to each other with a very small spacing of 0.004 λ0 (λ being the free space wavelength of 433 MHz), confining the antenna dimensions to 51 × 50 mm2. The antenna resonates at the 433 MHz (ISM), 2.4 GHz (ISM), 3.9 GHZ (Fixed Satellite), 4.7 GHz (UWB) and 5.8 GHz (ISM) frequency bands. The antenna exhibits |S11| ≤ ?10 dB, |S21| ≤ ?16 dB, an ECC ≤ 0.01 for all operating frequencies, with circular polarisation at the 2.4 GHz and 5.8 GHz bands and linear polarisation at the others. The simulated structure was fabricated and tested, with the simulated and measured results displaying acceptable agreement.  相似文献   

20.
In this article, a wideband circularly polarized rectangular dielectric resonator antenna (RDRA) with broadside radiation characteristics has been proposed. By using modified ground plane having an F‐shaped slot, the proposed structure able to generates three sets of modes i.e., fundamental as well as higher order modes. To obtained circular polarization, an orthogonal mode (TE113) in the RDRA has been generated by using the F‐shaped slot on the modified ground plane. The resonance frequency of fundamental mode (TE111) in the rectangular dielectric resonator (DR) has been calculated by using dielectric waveguide model method. The same has been confirmed through E‐field distribution in RDRA. Here, wide axial ratio (AR) bandwidth of the proposed antenna is due to the generation of and modes. It is observed that input impedance bandwidth has been broadening with a pair of excited modes ( and modes) in the proposed antenna structure. All these modes have been excited and merged to form a wide input impedance bandwidth and wide AR bandwidth of the designed antenna. The proposed antenna shows measured input reflection coefficient (S11 < ?10 dB) of 50.55% and measured AR bandwidth (AR < 3 dB) of 14.28%. The designed antenna shows left‐handed circular polarization in broadside direction and offering an average gain and radiation efficiency of 4.29 dBic and 92.22% respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号